Matlab is a registered trademark of The Mathworks, Inc.


 Advanced Source Code . Com

 
 
HOME SOURCE CODE SOFTWARE INFO SUPPORT CONTACT US
 
Source code for fingerprint recognition, face recognition and much more


Software Info    About us     
Go To Matlab Official Website

.: Click here to download :.

Speaker recognition or voice recognition is the task of recognizing people from their voices. Such systems extract features from speech, model them and use them to recognize the person from his/her voice. Speaker recognition has a history dating back some four decades, where the output of several analog filters was averaged over time for matching. Speaker recognition uses the acoustic features of speech that have been found to differ between individuals. These acoustic patterns reflect both anatomy (e.g., size and shape of the throat and mouth) and learned behavioral patterns (e.g., voice pitch, speaking style). This incorporation of learned patterns into the voice templates (the latter called "voiceprints") has earned speaker recognition its classification as a "behavioral biometric."

Speaker recognition systems employ three styles of spoken input: text-dependent, text-prompted and text-independent. Most speaker verification applications use text-dependent input, which involves selection and enrollment of one or more voice passwords. Text-prompted input is used whenever there is concern of imposters. The various technologies used to process and store voiceprints includes hidden Markov models, pattern matching algorithms, neural networks, matrix representation and decision trees. Some systems also use "anti-speaker" techniques, such as cohort models, and world models. Ambient noise levels can impede both collection of the initial and subsequent voice samples. Performance degradation can result from changes in behavioral attributes of the voice and from enrollment using one telephone and verification on another telephone. Voice changes due to aging also need to be addressed by recognition systems.

Many companies market speaker recognition engines, often as part of large voice processing, control and switching systems. Capture of the biometric is seen as non-invasive. The technology needs little additional hardware by using existing microphones and voice-transmission technology allowing recognition over long distances via ordinary telephones (wire line or wireless). Multi-layered networks are capable of performing just about any linear or nonlinear computation, and can approximate any reasonable function arbitrarily well. Such networks overcome the problems associated with the perceptron and linear networks. However, while the network being trained may be theoretically capable of performing correctly, back propagation and its variations may not always find a solution. There are many types of neural networks for various applications multilayered perceptrons (MLPs) are feedforward networks and universal approximators. They are the simplest and therefore most commonly used neural network architectures.

Index Terms: Matlab, speaker recognition, speaker verification, speaker matching, neural networks, feature extraction, ann, artificial neural networks, nn.

 

 

 

 

Figure 1. Speech signal



A simple and effective source code for Speaker Identification based on Neural Networks.



Demo code (protected P-files) available for performance evaluation. Matlab Signal Processing Toolbox and Matlab Neural Network Toolbox are required.

Release
Date
Major features
1.1

2006.07.12

  • Minor bug fixed
1.0

2006.06.14



We recommend to check the secure connection to PayPal, in order to avoid any fraud.
This donation has to be considered an encouragement to improve the code itself.

Speaker Recognition System Based on ANN - Release 1.0 - Click here for your donation. In order to obtain the source code you have to pay a little sum of money: 150 EUROS (less than 210 U.S. Dollars).

Once you have done this, please email us luigi.rosa@tiscali.it
As soon as possible (in a few days) you will receive our new release of Speaker Recognition System Based on ANN.

Alternatively, you can bestow using our banking coordinates:
Name :
Luigi Rosa
Address :
Via Pozzo Strada 5 10139 Torino Italy
Bank name:
Poste Italiane
Bank address:
Viale Europa 190 00144 Roma Italy
IBAN (International Bank Account Number) :
IT-50-V-07601-03600-000058177916
BIC (Bank Identifier Code) :
BPPIITRRXXX

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

The authors have no relationship or partnership with The Mathworks. All the code provided is written in Matlab language (M-files and/or M-functions), with no dll or other protected parts of code (P-files or executables). The code was developed with Matlab 14 SP1. Matlab Signal Processing Toolbox and Matlab Neural Network Toolbox are required. The code provided has to be considered "as is" and it is without any kind of warranty. The authors deny any kind of warranty concerning the code as well as any kind of responsibility for problems and damages which may be caused by the use of the code itself including all parts of the source code.

New - Python Face Recognition
 Biometric Authentication with Python We have developed a fast and reliable Python code for face recognition based on Principal Component Analysis (PCA). Proposed algorithm results computationally inexpensive and it can run also in a low-cost pc such as Raspberry PI.
 
New - Raspberry PI Remote Desktop
 Raspberry PI Remote Desktop A complete and detailed PDF tutorial to learn how to connect to and from a Raspberry PI using Remote Desktop.
 
New - Speaker Verification System
 Text-Independent Speaker Authentication There are two major applications of speaker recognition technologies and methodologies. If the speaker claims to be of a certain identity and the voice is used to verify this claim, this is called verification or authentication.
 
New - Java Face Recognition
 Java-based Biometric Authentication System Face recognition is essential in many applications, including mugshot matching, surveillance, access control and personal identification, and forensic and law enforcement applications.
 
New - White Papers
 High Capacity Wavelet Watermarking Using CDMA Multilevel Codes This paper proposes a technique based on CDMA and multilevel coding in order to achieve a high capacity watermarking scheme. The bits of watermark are grouped together and for each sequence a different modulation coefficient is used.
 
New - WebCam Face Identification
 Face Recognition Based on Fractional Gaussian Derivatives Local photometric descriptors computed for interest regions have proven to be very successful in applications such as wide baseline matching, object recognition, texture recognition, image retrieval, robot localization, video data mining, building panoramas, and recognition of object categories.
 
New - Speaker Recognition System
 Source code for speaker recognition
Speaker recognition is the process of automatically recognizing who is speaking on the basis of individual information included in speech waves.
 
New - Speech Recognition System
 Source code for isolated words recognition
Speech recognition technology is used more and more for telephone applications like travel booking and information, financial account information, customer service call routing, and directory assistance. Using constrained grammar recognition, such applications can achieve remarkably high accuracy.
 



The MathWorks, Inc. Google NeuralNetworks.It Octave Scilab The R Project for Statistical Computing Python Other available resources English Dictionary Download .Com
 
Software Info    About us