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Abstract—A theoretical model to numerically study the local
space-charge field induced by light in a photorefractive crystal
biased with two independent, perpendicularly oriented external
static fields is introduced. This model appears attractive because it
allows varying, in the crystal transverse plane, of the orientation
of the external biasing static field with respect to that of the
optical-field vector, then enhancing the tensorial properties of the
crystal. The numerical analysis has revealed that, in a noncon-
ventional biasing configuration, the spatial distributions of the
space-charge-field vector transversal components exhibit a further
anisotropy that has not been shown up to now. Nevertheless, from
a practical point of view, such a boundary configuration could
allow better management of the focusing characteristics of the
material.

Index Terms—Nonlinear optics, nonlinear wave propagation,
optical self-focusing, optical solitons, photorefractive effects,
photorefractive materials.

I. INTRODUCTION

PHOTOREFRACTIVE crystals are becoming key materials
even in the field of the optical fiber transmission systems.

For example, recent literature [1]–[4] carried on a centrosym-
metric photorefractive crystal—the potassium lithium tantalate
niobate (KLTN)—has shown attractive features of this material,
which appears very promising for the realization of advanced
optical switches and optical add–drop devices [5], [6]. More-
over, due to the possibility to create, by means of a proper ex-
ternal biasing voltage, a spatial solitonlike waveguide on a pho-
torefractive [7]–[16], intriguing structures for the optical beam
manipulation can be obtained as well.

Generally speaking, in a photorefractive medium, a highly
diffracting optical beam ionizes impurities hosted in the crystal
lattice. An externally applied electric field makes these mobile
charges drift to less-illuminated regions, forming a double layer
that reduces the resultant electric field in the illuminated re-
gion. For an appropriate electrooptic sample, this reduction lo-
cally modifies the refractive index and leads to self-lensing so
that even soliton propagation is possible to obtain, when the
beam diffraction is exactly compensated. It is well known that
the characteristics of the waveguide created in a photorefractive
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depend on the crystal tensorial structure [8] and on the partic-
ular electrooptic response of the crystal to the photo-induced
space-charge field that can be linear or quadratic [17], [18].
For noncentrosymmetric structures, the electrooptic refraction-
index modulation is proportional to the static space-charge field
(linear electrooptic effect, or Pockels effect). In centrosymmet-
rics, the electrooptic response is purely quadratic, and the refrac-
tive-index pattern locally induced by light depends on the prod-
ucts of the static space-charge-field vector components (Kerr
electrooptic effect).

In this context, the propagation of optical beams in photore-
fractive crystals belonging to both noncentrosymmetric and
centrosymmetric point groups have been extensively studied
[7]–[16]. Nevertheless, to the authors’ knowledge, most of
theoretical and experimental analysis has been performed
only according to conventional external biasing schemes,
i.e., by considering a transverse external biasing static field
just oriented along a given direction, where the electrooptic
tensor of the crystal generally exhibits a dominant component.
Even when the propagation of optical beams with arbitrary
polarization states has been studied [8], different boundary
conditions have not been considered. On the contrary, more and
more attractive guidance properties of photorefractives could
be highlighted if nonconventional boundary configurations are
taken in account. In fact, a proper boundary condition, which
allows management of the orientation of the external biasing
static field with respect to that of the optical-field vector, could
enhance the tensorial features of the crystal and allow analysis
of its optical confinement properties in a proper way.

This paper describes a numerical analysis of the space-
charge-field distribution induced by a visible Gaussian beam in
a photorefractive biased with such a nonconventional scheme.
Also studied are the characteristics of the local space-charge
field in the presence of a rotation of the external biasing static
field in the transverse optical beam polarization plane, high-
lighting the main results that could be useful to evaluate the
impact of the boundary on the optical beam propagation. It
was found that, by imposing a nonconventional boundary to
the crystal, the local space-charge-field distribution—and then
the index pattern generated by the active light—can be strongly
modified, in such a way as to allow an effective possibility to
manage its optical guiding properties. Thus, it is believed that
the results reported in this paper could provide useful indica-
tions for future theoretical and experimental investigations.
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Fig. 1. Theoretical model and boundary conditions.

II. MATHEMATICAL MODEL

We have performed our analysis of the space-charge field in-
duced by visible light in a biased photorefractive crystal by nu-
merically solving the following Kukhtarev’s equation [10], [11]

(1)

In this expression, is the electrostatic potential in
the – transverse plane, is the optical intensity
of the propagating beam in nonlinear regime, is the
artificial dark irradiance, is the Boltzmann constant,

293 is the absolute temperature, the electron charge,
and is the transverse gradient. For
our investigation, we assumed to launch, at the input of the
crystal, an optical beam, polarized in the – plane, with a
transverse Gaussian spatial intensity distribution given by

(2)

in which are the variances along the and direc-
tions, and the beam peak intensity. In our investigation,
we consider a purely transverse (i.e., independent on the
axis) external biasing-field distribution. In order to analyze
the space-charge-field properties in both its and transverse
vector components, we introduced a particular theoretical
model (shown in Fig. 1) that allows varying of the orientation
of the external biasing static field in the – transverse plane.
In this model, we assigned, in correspondence of the transverse
section perpendicular to the axis, the following boundary
conditions for the potential

(3a)

(3b)

In (3a) and (3b), and are the transversal sizes of the
boundary, and the boundary voltage values that are
assumed independent on the and coordinates. From a prac-
tical point of view, this approach is equivalent to considering
a crystal with transverse sizes much more larger than and

that is biased by means of two independent, perpendicularly
oriented external static fields, respectively given by

, when the beam il-
lumination is absent. Moreover, we also assume in this model
that the transversal sizes of the boundary are much larger than
the beam-spot diameter so that the presence of the optical beam
field does not change the distribution of the electric static field at
the boundary. According to this approach, we considered an op-
tical beam spot with FWHM FWHM 10 m (full-width
at half-maximum of the optical-field intensity along the and
directions), and transverse boundary sizes not less than
200 m. Now let us make some consideration regarding the
structure of (1). We solved the potential equation in (1) by means
a five-point finite-difference scheme. In this theoretical model,
the space-charge-field distribution is given by the contribution
of the drift and the diffusive fields [10], [11], [19], [20]. Gen-
erally speaking, for a given boundary condition (3a) and (3b),
the solution of (1) can be expressed as the superposition of two
terms: the solution of the homogeneous equation

(4)

with the boundary conditions (3a) and (3b), and the solution
of the inhomogeneous equation (1), in which the boundary
condition

(5a)

(5b)

is imposed. We can derive the drift-field vector components
from the homogeneous equation (4), with the conditions (3a)
and (3b), and the diffusion-field vector components from
the inhomogeneous equation (1) by means of (5a) and (5b).
Then, for each transverse vector component, the complete
space-charge-field distribution induced by the Gaussian beam
is given by the superposition of two vector-field distributions:
an anisotropic-field spatial distribution like that reported in
literature [15], which gives the space-charge field induced by
the drift of the space charges and a purely asymmetric-field
spatial distribution due to the presence of the diffusive term. An
immediate consequence of this feature of (1) is that different
orientations and magnitudes of the external biasing static field
induce changes only on the anisotropic space-charge field dis-
tribution, without any impact on the diffusive term. Moreover,
we can express the space-charge-field vector components as
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(5a)

(5b)

where the notations DRIFT and DIFF refer to the drift and the
diffusion fields, respectively. As we will show in the following
analysis, this consideration allows us to better evaluate the
impact of both drift and diffusive terms on the features of the
photorefractive crystal. In this sense, one should specify the
form of the crystal electrooptic tensor, which can be linear
or quadratic [17]. According to the structure of the crystal
electrooptic tensor, in a biased photorefractive medium, the
space-charge-field distribution induced by the visible beam
modifies the refractive-index pattern, thereby changing the
propagation features of the beam that propagates through
the crystal [7]–[15]. The general tensorial problem is rather
complicated and leads to coupled equations for the polarization
components of the optical field [8]. This problem is beyond
the scope of this paper, and we limit ourselves to qualitatively
describing the impact of the space-charge field induced by
the photorefractive effect on the beam propagation through
the crystal. In a complete tensorial approach, the ratio be-
tween refractive-index modulation depth and the zero-field
refractive indexes is very small so that a series expansion
can be performed [10], [11], [17], and all nonlinear terms in
the coupled nonlinear equation [8] are commonly considered
linearly proportional (noncentrosymmetric crystals [10], [11])
or quadratically proportional (centrosymmetric crystals [17])
to the magnitude of the vector components of the space-charge
field. Because we mainly aim to analyze the vector properties
of the static photorefractive space-charge field in standard
and nonstandard biasing conditions, without a significant
lack of generality, we generically describe the impact of the
space-charge-field vector components on the beam propagation
by means of the simplified expressions

(6a)

(6b)

In (6a) and (6b), valid for noncentrosymmetric and centrosym-
metric crystals, respectively, is the zero-field refractive index
(which generally is one of the principal indexes), and both in-
dexes can be set equal to the and transverse coordi-
nates. is the generic nonlinear term associated to the
refractive-index modulation, and is the local refractive-
index spatial distribution induced by the vector space-charge-
field components that are taken in account. The constants and

are assumed positive and, in practice, can be considered pro-
portional to the coefficients of the linear and quadratic elec-
trooptic tensors that are taken in account, according to the beam-
launching conditions and the geometry of the medium. Then,
by means of the (6a) and (6b), we analyze separately the fea-
tures of each nonlinear term that can be present in the coupled
nonlinear equations describing the beam propagation through
photorefractives.

III. SPACE-CHARGE FIELD INDUCED BY A GAUSSIAN BEAM IN

A CONVENTIONAL BIASING SCHEME

We considered the square input transverse section of the
photo refractive crystal, biased along the transverse direction
with an external static field
V/m, in which a visible optical input Gaussian beam induces
a local space-charge-field distribution. We analyzed the char-
acteristics of the photogenerated space-charge field by varying
both the orientation of the external biasing static-field vector
and the normalized input beam peak intensities ratio . We
first studied the local-field distribution obtained by imposing

.
Fig. 2(a) shows the numerical evaluation of the com-

ponent of static electric field associated to the input Gaussian
beam with the parameters reported previously (in all figures re-
ported here, a.u. stands for arbitrary units). The space-charge
field induced by the Gaussian beam appears highly anisotropic.
It exhibits a major central lobe and two lateral smaller lobes
oriented along the axis. The peak amplitudes of the lobes are
equal to V/m (central lobe) and V/m (lat-
eral lobes), versus a plateau value of V/m (this last
term corresponds to the value of the electric static field when
the input optical beam is absent).

We report in Fig. 2(b) the component of the diffusive field. It
exhibits an evident asymmetry along the direction. Therefore,
due to the presence of the diffusion field that overlaps to the
drift field, the whole space-charge-field distribution undergoes
a small lack of symmetry along the direction, and then the
amplitudes of lateral lobes are slightly different.

Now let us consider a conventionally biased noncentrosym-
metric crystal [8], [10], [11]. According to the simplified expres-
sion (6a), the drift term of the space-charge field component in
Fig. 2(a) modifies the refractive-index pattern that, in proximity
of the beam spot, exhibits a main central lobe and two smaller
lateral lobes. This leads to an increase of the refractive index in
the beam center region, where a graded-index waveguide is cre-
ated, and the beam is focused through the propagation.

With regard to the diffusive field , literature
based on the study of the optical beam propagation in pho-
torefractives haves shown that it induces a self bending of an
optical beam that propagates through the crystal [19]–[22].
This feature of the diffusive-field component can be explained
by means of the small lack of symmetry along the direction
introduced by this term in the space-charge-field distribution.
For example, recalling (6a), in the case of a conventionally
biased noncentrosymmetric crystal, according to the spatial
distribution reported in Fig. 2(a), the ends of the center region
of the graded-index waveguide due to the photorefractive effect
must exhibit two lateral holes along the axis, having different
depths along the direction. Thus, the waveguide due to the
space-charge field induces two slightly different focusing ef-
fects on the lateral ends of the beam along the axis, giving rise
to a beam bending during the propagation. The beam bending
is just oriented along the direction of these lateral wells and
directed toward those that are less deep, where the focusing
effect on the beam lateral endings along the direction is lower.
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Fig. 2. Conventional biasing scheme with j ~E (x; y)j = j ~E (x; y)j = 2:3 � 10 V/m. (a) x component of the space-charge field E (x; y). (b) x component
of the diffusive field E (x; y).

Now we consider the structure of the component
[shown in Fig. 3(a)]. It exhibits a different shape with respect
to the component, characterized by a quite complicated
anisotropic four-lobe structure, with two couples of positive
and negative lobes versus a plateau value of 0 V/m. From nu-
merical calculation, it emerges that the amplitudes of these four
lobes ( V/m) are around 20% of the plateau value
of the component and of the same order of magnitude
of its two lateral smaller sidelobes [shown in Fig. 2(a)].

As in the case of the other transverse component, the structure
of the component of the static electric field induced by the
light depends on the component of the diffusive field, shown
in Fig. 3(b). We note that this component is asymmetric along
the direction. Then, it induces on the anisotropic four-lobe
structure a further slight asymmetry along the axis so that,
within each couple of lobes having the same sign, the amplitudes
appear slightly different.

As reported previously, the impact of on the beam
evolution in the photorefractive crystal consists on two contri-
butions: the drift and the diffusive
components. From a rigorous point of view, we can expect
that, according to the structure of the electrooptic tensor (linear
or quadratic), the drift field perturbs the beam propagation
through the crystal by modifying the guidance properties of the
waveguide that itself induces. With regard to the diffusive field

, it introduces a further slight lack of symmetry in
the component, and then the contribution of
could give rise to a further beam bending of the optical beam
during the propagation. Clearly, the particular impact of this
vector component depends on the structure of the electrooptic
tensor of the crystal but, with the help of (6a), we can make

some useful consideration about the symmetry characteristics
of this vector space-charge-field component.

Therefore, let us consider Fig. 3(b). According to (5b), the
component of the space-charge field is due to the superposition
of both drift and diffusive terms. Because the diffusive-field
component exhibits an asymmetry along the axis, we have
that, in this figure, the peak amplitude of the positive lobe closer
to the (0, 0) origin is lower than the other, far from the origin, and
the peak of the negative lobe closer to the axis is less negative
in comparison with its twin.

For a noncentrosymmetric sample, we apply (6a) and analyze
the features of a graded-index waveguide induced by a refrac-
tive-index modulation linearly proportional to the
term (still assuming a positive proportionality constant). In this
case, from a theoretical point of view, among all lobes in the
space-charge-field component distribution, only the positive
lobes produce a confinement effect on the optical beam. In
fact, in the direction along the positive lobes, the optical beam
sees a locally modified refractive-index distribution, in which
two lateral small holes are introduced. Then, along the positive
lobes, the beam sees lateral refractive-index values that are
lower than those in proximity of the beam peak intensity and
induce a focusing effect on it. The situation is practically
inverted in the direction along the negative lobes that introduce
an antiguiding effect on the beam. Because in this configu-
ration only the positive lobes produce a confinement of the
beam, what effectively induces the beam bending through the
propagation is the asymmetry of the positive lobes. In fact,
due to the asymmetry induced by the diffusive term, in the
direction along the negative lobes the depths of the lateral holes
in the refractive-index pattern are slightly different, and this
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Fig. 3. Conventional biasing scheme with j ~E (x; y)j = j ~E (x; y)j = 2:3 � 10 V/m. (a) y component of the space-charge field E (x; y). (b) y component
of the diffusive field E (x; y).

feature produces a bending of the propagating beam. On the
contrary, the asymmetry of the negative antiguiding lobes do
not affect the propagation through the crystal, and then only
the component of the space-charge field effectively produces
an effective beam bending, just along the direction oriented
along the positive lobes. Generally speaking, according to the
beam-launching conditions and to the characteristics of the
electrooptic tensor of the medium, both and components
of the diffusive term can interact with each other, and the
resulting beam bending is given by a mixture of their separated
contributions.

In the case of centrosymmetrics [17], the beam evolution is
given by the quadratic terms and by the
product . The spatial distribution of
exhibits the same shape and asymmetry of the case in Fig. 2(a)
so that, in the frame of the scalar simplified approach of (6b),
with a positive proportionality constant, it produces a confine-
ment effect on the beam and induces a beam bending in the
same direction. The cases of the quadratic term and the
product are quite anomalous. In this sense,
we noticed from simulations that the term shows a
four-lobe structure in which all lobes are positive, as we could
reasonably expect by its quadratic expression. Nevertheless, this
term did not show an asymmetry along the direction, as we
could expect from the presence of the diffusive field, but the
same asymmetry of , i.e., oriented along the axis.
This is because, according to (5b), the asymmetry is introduced
in the quadratic expression of through the product

, which combines the features of
both drift and diffusive terms. By considering, according to (6b),
a graded-index waveguide induced by a refractive-index mod-
ulation proportional to the term, all four lobes in the

component structure produce a confinement effect on the op-
tical beam, and the effective asymmetry in the term
should enhance the beam bending in the direction of the ex-
ternal biasing field. Finally, with regard to the characteristics
of the spatial distribution, numerical simula-
tions showed that it appears analogous to that of the
term in Fig. 3(a), so that we can extend to it the same consider-
ations expressed previously for this vector component.

Now we consider the local space-charge-field distribution in
the saturation regime, i.e., with very low values of the back-
ground optical intensity. We imposed a normalized beam in-
tensity ratio equal to and the same value
of the external biasing field. We show the results in Figs. 4
and 5, reporting the and spatial distribu-
tions, respectively. In order to analyze these features, we must
take in account that the contribution of the diffusive term to
the space-charge field strongly depends on the derivatives of
the optical beam intensity distribution and becomes more and
more significant by increasing the normalized beam intensity
ratio and decreasing the optical beam spot radius. Then, in a
strong saturation regime, it can become a dominant term in both

and the components. Owing to this con-
sideration, we solved the homogeneous equation (4), with the
boundary conditions (3a) and (3b), thus by neglecting the pres-
ence of the diffusive field.

Fig. 6(a) and (b) shows the and components of the
drift field in the conventional biasing situation. In comparison
with the case of Fig. 2, we can note an evident saturation
effect on the major central lobe of the space-charge-field
component [Fig. 6(a)]. This behavior of the drift field in the
saturation regime exhaustively explains the lack of guidance
in a biased photorefractive crystal in presence of low optical
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Fig. 4. Conventional biasing scheme with j~E (x; y)j = j ~E (x; y)j = 2:3 � 10 V/m. x component of the saturated space-charge field E (x; y): (a) side view
and (b) top view.

Fig. 5. Conventional biasing scheme with j ~E (x; y)j = j ~E (x; y)j = 2:3 � 10 V/m. y component of the saturated space-charge field E (x; y): (a) side view
and (b) top view.

backgrounds. In fact, from Fig. 6(a), it emerges that, by in-
creasing the normalized beam intensity ratio, the main central
lobe exhibits a pseudoelliptical flattened shape that induces
a local refractive-index pattern practically constant over a
large region of the – plane. This portion of space is quite
larger than the Gaussian beam spot so that the guiding effect
of the refractive-index modulation disappears. Obviously, this

consideration does not take in account the contribution of the
diffusive field. A comparison with Figs. 4 and 5 shows that,
at very low values of the background intensity plateau, the
diffusive-field components can be even an order of magnitude
larger than the corresponding drift amplitudes, thus confirming
the importance of the diffusive term on the total space-charge
field in this operating regime.
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Fig. 6. Conventional biasing scheme with j ~E (x; y)j = j ~E (x; y)j = 2:3 � 10 V/m. Saturated space-charge drift field: (a) xx component E (x; y) and
(b) y component E (x; y).

Fig. 7. Nonconventional biasing schemes by varying the orientation of the
biasing field ~E (x; y) in the upper right quadrant. (a)–(e) x component of
the space-charge field E (x; y). (f)–(l) y component of the space-charge field
E (x; y).

IV. SPACE-CHARGE FIELD INDUCED BY A GAUSSIAN BEAM IN

A NONCONVENTIONAL BIASING SCHEME

Now we will analyze the space-charge-field distribution in-
duced by a particular boundary condition, where the external
biasing field vector rotates in the – transverse plane. It is
an intriguing investigation because, with this new configura-
tion, from a theoretical point of view, we could expect to en-
hance the focusing properties of the or modify
the impact of the lack of symmetry induced on the space-charge
field by the diffusive-term vector components. Figs. 7(a)–(l)
and 8(a)–(l) show the transverse space-charge-field distributions
corresponding to a complete rotation of the external static bi-
asing static-field vector in the – plane. Fig. 7(a) and (f) re-
port the same biasing condition of Fig. 2(a) and (b), where the
biasing field is applied only on the direction. In the – trans-
verse plane, the component of the space-charge field exhibits a

pseudoelliptical shape of the major central lobe, squeezed along
the axis [23]. From the subsequent figures, it emerges that,
with the same magnitude of the external biasing field, by in-
creasing the contribution of the component , both
distributions of the and components of the space-charge
field gradually change in a significant way. Progressively, the

component is driving to get the same asymmetric
four-lobe structure of the component in the case of an

-biased crystal [Fig. 3(a)]. We can note this feature simply by
comparing Fig. 7(e) with Fig. 7(f): the distribution of maxima
and minima is the same for both cases. Nevertheless, the asym-
metry induced by the diffusive term introduces a difference be-
tween the two space-charge-field components. In fact, in the
case of Fig. 7(e), the diffusive component over-
laps to the component and induces an asym-
metry along the axis. On the contrary, in the case of Fig. 7(f),
the diffusive component overlaps to the com-
ponent , and then an asymmetry along the axis
appears. On the other hand, by making a comparison between
Figs. 7(a) and (l), we can note that the component of the
space-charge field gradually assumes a feature analogous to that
of the component in Fig. 2(a). Nevertheless, we note that the
orientation of the two lateral smaller lobes appear different, as
well as the squeezings of both major central lobes, each one
oriented along the external biasing-field direction. With regard
to the intermediate cases, Fig. 7(b)–(d) and (g)–(i) show that,
by gradually changing the external biasing-field vector orien-
tation, the space-charge-field components exhibit a mixing of
behaviors reported here previously. For example, by looking at
Fig. 7(b) and (g), where the external biasing-field vector is ro-
tated 0.40 rad with respect to the axis, we note that the con-
tribution of the biasing-field component produces a slight rota-
tion of the component of the space-charge field, and a merging
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of the guiding lobes in the space-charge-field component that
overlap each other and form a pseudoelliptical guiding central
lobe. The situation results are practically inverted in Fig. 7(d)
and (i), where the external biasing-field vector is rotated up to

1.16 rad with respect to the axis.
Fig. 7(c) and (h) are probably the most significant, from a

practical point of view. In fact, in this case, the biasing static
electric-field vector is oriented at 4 rad with respect to the

axis, and then the crystal undergoes a particular boundary
condition, with
V/m. The presence of such a boundary scheme removes the
anisotropy shown in Fig. 7(e) and (f), concerning the drift
component of both space-charge-field vector components in
the case of a conventional biasing scheme. In fact, both dis-
tributions basically exhibit the same structure, analogous to
that reported in Fig. 2(a) for the conventional biasing scheme,
with a plateau field, a pseudoellipsoidal major central lobe, and
two lateral smaller lobes. In comparison with the structure in
Fig. 2(a), we have that the plateau level and the peak amplitudes
of the lobes in each distribution are reduced by a factor (as
we reasonably expect). Nevertheless, in this biasing conditions,
the space-charge field shows a different aspect of its anisotropic
nature. A further particular anisotropy of the space-charge
field appears from Fig. 7(c) and (h): the spatial distributions of

clearly show two different orientations of
the central lobe squeezed axes. This lack of isotropy concerns
the drift components of the total
field space-charge field.

As in the case of the previous section, the whole spatial struc-
ture of each vector component can be described as the superpo-
sition of the drift and the diffusion terms. The asymmetric diffu-
sion-field vector components overlap on the drift vector terms
introducing, in each vector component spatial distribution, an
effective asymmetry oriented along the squeezed axes of the
central pseudoellipsoidal distributions, making the lateral lobes
slightly different. Then, let us consider a noncentrosymmetric
crystal in such a nonconventional biasing condition. As in the
last section, for sake of simplicity, let us introduce the simpli-
fied scalar approach of the (6a) and analyze the properties of the
graded-index waveguides induced by the refractive-index mod-
ulation linearly proportional to the and term,
respectively. By still assuming a positive proportionality con-
stant, from the considerations expressed previously, we derive
that each local-field vector component (separately considered)
behaves as in the case of Fig. 2(a), thus leading to an increase of
the refractive index in the beam center region so that a beam con-
finement is achieved. Moreover, the asymmetry due to the dif-
fusive term also acts as in the case of Fig. 2(a) and then induces
a beam bending just along a direction parallel to the squeezed
axis of its own central lobe.

In the case of centrosymmetric structures, with this boundary
configuration, the squared terms exhibit
the same shapes and asymmetries of the
distributions, and then, for these terms with the same sign of
the proportionality constant, the same considerations reported
previously for a noncentrosymmetric sample can be made.
With regard to the product , the numerical
simulation showed that also the spatial distribution of the

Fig. 8. Nonconventional biasing schemes by varying the orientation of the
biasing field ~E (x; y) in the upper left, lower left, and lower right quadrants.
(a)–(e) x component of the space-charge field E (x; y). (f)–(l) y component
of the space-charge field E (x; y).

product appears similar to those of the terms
, with a main pseudoellipsoidal central

lobe and two lateral smaller lobes. However, in this case, the
orientation of the central lobe squeezed axis is between the
directions of the central lobes squeezed
axes, with the same asymmetry characteristics. Then, with the
same previously mentioned assumptions, this term should also
induce a confinement of the beam through the propagation, as
well as a self-bending mainly oriented along a direction parallel
to the squeezed axis of its own central lobe.

These features appear interesting because it confirms that,
from a theoretical point of view, by means of a proper non-
conventional biasing configuration, the impact of both external
biasing static-field vector components can be enhanced, and
then both space-charge-field vector components can be used to
manage the focusing properties of the photorefractive medium,
especially in the case of arbitrarily polarized input optical
beams. In particular, such a nonconventional biasing scheme
could be particularly attractive to manage vector photorefrac-
tive spatial solitons. In this context, according to the results
in [8], self-coupled (i.e., coupled only through the depen-
dence of the space-charge field on the optical intensity) and
cross-coupled (i.e., coupled through the electrooptic tensor
and the space-charge field) vector solitons, or a combination
of them as well, may exist. In a conventional biasing scheme,
the two polarizations of the vector solitons may be coupled,
according to correct phase matching and specific configura-
tions. A nonconventional biasing configuration could enhance
the coupling capabilities in both vector soliton classes, offering
new opportunities for the use of the photorefractive materials.
Nevertheless, such a particular boundary condition also shows
a further anisotropy of the space-charge field that has not
been revealed up to now. Generally speaking, we expect that,
according to a given (linear or quadratic) tensorial structure of
the electrooptic tensor of a crystal, the electric-field transverse
vector components of an optical Gaussian beam that prop-
agates in a nonconventional biased photorefractive medium
see different waveguides, each one of them having a different
orientation of the central lobe squeezed axis. Because this
anisotropy is clearly not negligible a priori, it must be taken
into account in describing the beam propagation along a non-
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Fig. 9. Nonconventional biasing scheme with jE (x; y)j = jE (x; y)j = (1=
p
2) �2:3 �10 V/m. x component of the saturated space-charge field E (x; y):

(a) side view and (b) top view.

conventional biased crystal. We expect that it is especially true
in the case of vector spatial solitons or, according to a more re-
alistic approach, when the adiabatic evolution of the Gaussian
beam transverse polarization states in optical vector spatial soli-
tons is analyzed [19], [20]. We do not address this particular
problem here, but we think that this result could give rise to fur-
ther intriguing investigations about this theme.

In Fig. 8(a)–(l), we observe the remaining cases regarding the
evolution of the space-charge-field vector components, when
the external biasing-field vector is gradually rotated, with a step
of 4 rad, in the – transverse plane up to the lower right
quadrant, where it performs an angle of 4 rad with the
axis. We can note that the lobes of the vector components pro-
gressively invert their sign, and then change the confinement
properties of the waveguides that can be induced in the crystal,
and the beam bending direction as well. This is particularly true
in a noncentrosymmetric crystal, where the dependence of the
nonlinear effect on the space-charge field is linear, but can be
significant in a centrosymmetric as well, if the optical input po-
larization state is arbitrary, and a nonconventional biasing con-
figuration is used. In fact, in this case, the product of the com-
ponents , as well as the coupling between the
optical-field transverse components, is sign dependent.

As in the previous section, now we study the local space-
charge-field distribution in the saturation regime

, in the case of a nonconventional scheme. Among all
cases reported up now, we analyze the symmetric boundary con-
dition reported in Fig. 7(c) and (h), where the biasing static elec-
tric-field vector is oriented at 4 rad with respect to the axis.
Then, we compare the results obtained with those reported in
Figs. 4–6 for a conventionally biased crystal.

As we could expect from the considerations expressed in the
previous section, the numerical analysis performed in the non-
conventional biasing scheme showed that, in comparison with
the previous case, the space-charge-field
components distributions do not change in a significant way,
when the external biasing-field vector rotates in the – plane,
because the diffusion term is still dominant. Then, we have
still performed a numerical analysis of the drift field (given by
the homogeneous equation (4), by imposing (3a) and (3b)).
Figs. 9(a) and (b) and 10(a) and (b) report the corresponding
results for the nonconventional biasing configuration. We can
note that, in this other scheme, the saturation mechanism affects
both central lobes belonging to the drift field and com-
ponents, which exhibit more sophisticated spatial structures,
in comparison with those reported in Fig. 6(a) and (b). Apart
from two small lobes, which should not introduce a significant
impact on the beam propagation, both structures still show a
central flattened spatial distribution of the space-charge field,
which induces a local refractive-index pattern practically con-
stant over a portion of space in the – plane larger than the
Gaussian beam spot, thus compromising the guiding effect of
the refractive-index modulation.

As we have already mentioned, this feature of the drift field is
practically negligible, in the case of a strong saturation regime,
because the impact of the diffusive field is clearly dominant.
Nevertheless, in spite of the large impact of the diffusive field
on the total space-charge-field distribution, even in the case of
the strong saturation regime, the drift vector components keep
their anisotropic nature, with each one of them having a different
orientation of the central lobe squeezed axis. This result agrees
with the theoretical approach introduced in the previous section,
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Fig. 10. Nonconventional biasing scheme with jE (x; y)j = jE (x; y)j = (1=
p
2) �2:3 �10 V/m. y component of the saturated space-charge field E (x; y):

(a) side view and (b) top view.

by means of Figs. 5(a) and (b), which derives all properties of the
space-charge field induced by visible light in a photorefractive
through a superposition of the drift and diffusive-fields vector
components.

V. CONCLUSION

A nonconventional biasing configuration induces significant
changes in the spatial distributions of the space-charge-field
vector transversal components, introducing different anisotropic
features in its structure. In any case, such a boundary configu-
ration appears attractive to consider, because it could allow to
manage the impact of both external biasing static-field vector
components on the local space-charge field, and then control
the focusing properties of the photorefractive medium in the
case of arbitrarily polarized input optical beams.
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