
FFW - Fastest Filtering in the West
The FFW package is an FFT-based algorithm for a fast 2D convolution using the overlap-
add method. The overlap-add method is based on the fundamental technique in DSP:
decompose the signal into simple components, process each of the components in some
useful way, and recombine the processed components into the final signal. This is possible
since the convolutional operator is linear. The FFW package works similarly to fftfilt
function (Matlab Image Processing Toolbox) but in a deeper way: all possible lengths for
vectors are considered and not only lengths which are powers of two. This is highly
necessary since the FFTW package (for more details visit http://www.fftw.org) includes
codelets optimized also for other fixed sizes. Codelets are produced automatically by the
FFTW codelet generator: you can add your own codelets and re-calculate the execution
times for each FFT. The execution times for:

● FFT of real 1D vectors
● FFT of complex 1D vectors
● IFFT of complex 1D vectors with 'symmetric' option enabled
● IFFT of complex 1D vectors with 'nonsymmetric' option enabled

have been calculated with the script papiclock.m from length N = 1 up to length N = 2048.
These times have been determinated using PAPI for Matlab (available here or at
http://icl.cs.utk.edu/papi). A 2D FFT (see Matlab command fft2) is decomposed into
several 1D FFTs: the FFT operator for an N-dimensional array can in fact be splitted into
several 1-dimensional FFTs of monodimensional arrays. The FFW algorithm automatically
selects which is the best choice (first dimension, second dimension and best lengths for
overlap-add method) and calculates the 2D convolution.

The FFW package can be easily used to improve speed performances of:
2D convolution (Matlab function conv2)
2D filtering (Matlab function filter2)
2D cross-correlation (Matlab function xcorr2)
Normalized cross-correlation (Matlab function normxcorr2)

How does FFW package work?
In order to find the best parameters for overlap-add method an exhaustive search on 2D
matrices would not be possible. The computational cost of FFT2 operator is done
decomposing it into the computational costs of two series of FFTs on monodimensional
arrays. For example, if you want to calculate the FFT2 computational cost using a matrix N
x M as input, you will perform the following sum: N*cost(FFT(M)) + M*cost(FFT(N)) where
cost(FFT(X)) is the computational cost of FFT operator using as input a vector whose
length is X. The computational cost of FFT for a real vector is, in general, different from the
cost of FFT for a complex vector. For this reason more than one choice is possible: you
can choose the first dimension along which you can apply the FFT operator. Analogous
considerations can be made for IFFT operator.

After the minimum computational cost has been found, a finer tuning is possible: the FFW
algorithm makes a quasi-exhaustive search using an optimized algorithm. The fine-tuning
option requires a lot of time but it is recommended for high-performances FFT-based
filtering. Of course, this option has sense only when you have to do several convolution
products.

http://www.fftw.org/
http://icl.cs.utk.edu/papi

If both input images are real FFW algorithm uses 'symmetric' option when using IFFT
operator. The optimized parameters for FFW algorithm depend only on sizes of input
matrices and on their values (real or complex). If the same filter has to be applied to
several images, its FFT2 value can be determined only one time, saving computational
time. In this case (the same filter applied to several images) the determination of optimized
parameter must not take into account the computational cost of such operation, since it is
done only once. FFW algorithm can also work in time domain: this choice is necessary for
small filter kernel, using standard conv2 built-in Matlab function.

Please contribute if you find this software useful.

Report bugs to luigi.rosa@tiscali.it

Luigi Rosa
Via Centrale 35
67042 Civita Di Bagno
L'Aquila – ITALY
mobile +39 3207214179
email luigi.rosa@tiscali.it
web site http://www.advancedsourcecode.com

http://www.advancedsourcecode.com/
mailto:luigi.rosa@tiscali.it
mailto:luigi.rosa@tiscali.it

