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ABSTRACT
Oily residues left by tapping fingers on a touch screen may
breach user privacy. In this paper, we introduce the fin-
gerprint attack against touch-enabled devices. We dust the
touch screen surface to reveal fingerprints, and use an iPhone
camera to carefully photograph fingerprints while striving
to remove the virtual image of the phone from the finger-
print image. We then sharpen the fingerprints in an image
via various image processing techniques and design effective
algorithms to automatically map fingerprints to a keypad
in order to infer tapped passwords. Extensive experiments
were conducted on iPad, iPhone and Android phone and the
results show that the fingerprint attack is effective and ef-
ficient in inferring passwords from fingerprint images. To
the best of our knowledge, we are the first using finger-
print powder on touch screen and inferring passwords from
fingerprints. Video at http://www.youtube.com/watch?v=

vRUbJIcV9vg shows the dusting process on iPhone and video
at http://www.youtube.com/watch?v=6jS6KroER3Y shows the
dusting process on iPad. After dusting, password characters
for login are clearly disclosed.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.4.1
[Public Policy Issues]: Abuse and Crime Involving Com-
puters

General Terms
Security
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Touch-screen devices enjoy increasingly popular usage. Dis-
playbank forecasts that the total touch-screen panel market
size will grow to $9.65 billion and 1.35 billion units, and 800
million smartphones are expected to be touch-enabled in
2014 [14]. The market of smartbooks including tablets with
touch screen will catch up with the market of mobile phones.
Touch screens are also widely used in consumer-electronic
products such as personal digital assistants (PDAs), per-
sonal navigation devices, netbooks and laptops.

However, oily residues (i.e. smudges) left by tapping fin-
gers on a touch screen may disclose a plethora of information
about its owner/users. Aviv et al. [2] introduced the smudge
attack, which explores graphical passwords used by an An-
droid smartphone. A graphical password corresponds to a
graphical pattern when a finger presses on a touch screen
and drags around. They studied how to directly take pic-
tures of the smudges from a smartphone touch screen sur-
face at various camera angles with respect to the orientation
of the phone and showed that smudge attack can reveal the
graphical pattern-based passwords in Android.

Figure 1: Standard Latent

Print Field Kit

Figure 2: Fingerprint

on iPhone

In this paper, we introduce a fingerprint attack against
tapped passwords via a keypad instead of graphical pass-
words. In this attack, an attacker first dusts the touch
screen with fingerprint powder to reveal fingerprints left
from tapping fingers. She then photographes the finger-
prints, maps the fingerprints to the on-screen keyboard and



recovers the password characters. Brute force methods can
then be applied to derive the actual password sequence. For
a 4-characters PIN like those used by iPhone and iPad, an
attacker just needs to try 12 times on average to break into
the phone and read the open Gmail and collect sensitive
information from other applications such as phone book.
Fingerprints are often not visible and smudge attack in [2]
cannot work in these scenarios. Fingerprinting kits are also
widely available and a standard latent print field kit costs
only $30 [9] while we used a professional latent fingerprint
kit in Figure 1 [8], which costs $200. The professional latent
fingerprint kit contains a set of black and white fingerprint
powder and dusting brushes as well as a set of magnetic
powder and magnetic appicator, which were not used in our
experiments.

Figures 2 and 3 show the fingerprints on iPhone and iPad
after dusting and the photos are taken with iPhone 4s. We
trimmed the background and kept only iPhone and iPad
images. Our video at http://www.youtube.com/watch?v=

vRUbJIcV9vg shows the dusting process on iPhone and video
at http://www.youtube.com/watch?v=6jS6KroER3Y shows the
dusting process on iPad. We can see that the password char-
acters for login are clearly disclosed. A fiberglass brush and
white powder are used for dusting and revealing the finger-
prints on touch screen.

Figure 3: Fingerprint on iPad

Our threat model is as follows [10]: the attacker has
physical access to a touch-enabled device. This is a reason-
able assumption in many scenarios. An “attacker” such as
a spouse who has physical access to a smartphone can ap-
ply fingerprint powder to a smartphone and deploy the at-
tack. Corrupt staff at a working place deployed with touch-
enabled devices may also wield a fingerprinting kit and col-
lect “passwords on screens”.

The major contributions of this paper are summarized as
follows:

• We conducted a systematic study of inferring a pass-
word from photographed fingerprint images. We have
investigated various practical issues such as selecting
approbate fingerprint powder for dusting, removing
virtual images of the phone camera during photograph-
ing, sharpening fingerprints via various image process-
ing techniques, designing algorithms to automatically

infer passwords from fingerprint images, and differ-
entiating fingerprints from multiple persons sharing a
touch-enabled device.

• Extensive experiments on iPad, iPhone and Android
phone were performed to verify the feasibility and ef-
fectiveness of the fingerprint attack against touch-enabled
devices. In most scenarios, the attack can reveal more
than 50% of the passwords. We were also able to dif-
ferentiate fingerprints from people sharing a device.

The rest of the paper is organized as follows: Section 2
introduces most related work. In Section 3, we introduce
the fingerprint attack to infer the password from fingerprint
images. We evaluate the attack in Section 4 and briefly
discuss countermeasures in Section 5. Section 6 concludes
this paper.

2. RELATED WORK
Felt et al. [10] classify threats from third-party smart-

phone applications into malware, grayware, and personal
spyware. Malware intends to damage finance or property
of the smartphone owner. An “attacker” such as a spouse
who has physical access to a smartphone can install per-
sonal spyware on the victim smartphone and gather infor-
mation about the smartphone owner, for example, track-
ing the victim. Grayware is often commercial applications
with real functionality while stealing user information. The
distributor may have a privacy policy with varying degree
of clarity. The authors conduct a survey of 46 pieces of
smartphone malware and their incentives and conclude that
Apple’s mechanisms of application permission and review
process can avoid approving malware. Becher et al. [5]
examine mechanisms securing sophisticated mobile devices.
Although no major incidents of attacking smartphones have
happened, small-scale attacks have been emerging. Threats
are classified into four classes: hardware centric, device inde-
pendent, software centric, and user layer attacks for the pur-
pose of eavesdropping, availability attacks, privacy attacks
and impersonation attacks. Existing security mechanisms
are enumerated for various attacks.

TouchLogger [6] is an Android malware, which is installed
by a victim and utilizes device orientation data to infer
keystrokes. When a user types on a virtual keyboard on
a touch screen, the orientation event reports intrinsic Tait-
Bryan angles and timing and reflects device orientation, which
is user independent in terms of typed keys. TouchLogger in-
fers the typing locations from Tait-Bryan angles and timing
information and derives the corresponding keys. Owusu et
al. show [22] that a malware can use only accelerometer
data to infer the entered keys on a virtual keyboard. The
inference accuracy is constrained by the sampling frequency
of the accelerometer, the key location, and its size. Pattern
recognition is used and 46 features are generated from each
preprocessed acceleration stream. TapLogger [30] also uses
motion sensors to infer a userŠs tap inputs to a smartphone.

In [23], refections of a device’s screen on a victim’s glasses
or other objects are exploited to automatically infer text
typed on a virtual keyboard. The authors use inexpensive
cameras (such as those in smartphones), utilize the fact of
keys popping out when pressed and adopt computer vision
techniques processing the recorded video in order to infer
the corresponding key although the text in the video is illeg-
ible. Balzarotti et al. [4] proposed an automatic approach



to reconstruct the text typed on a keyboard from a video
of a person typing on a physical keyboard. They assume
that the attacker can deploy a camera to record the victim’s
hand on the keyboard, and the camera has a static and clear
view of the typing hand on the keyboard. Computer vision
analysis is applied to analyze each frame of the video and re-
construct the keys pressed by the victim. Maggi et al. [15]
implemented an automatic shoulder-surfing attack against
touch-enabled mobile devices. In their work, the attacker
can employ a video camera to the target screen when the
victim inputs the text on a touch screen. Then the system
processes the stream of images frame by frame in order to
detect the touch screen, rectify and magnify the screen im-
ages, and ultimately identify the popping up keys typed by
the user.

In [17], an iPhone is used to sense vibrations via accelerom-
eters from a nearby keyboard and infer the entered text. The
challenge is that the sampling rates of the accelerometer run-
ning in a modern mobile phone is often very low, merely 100
Hz. The authors use profiles of pairs of keypress events and
neural networks to recover the text from barren accelerom-
eter data. Keystrokes can also be derived from acoustic fre-
quency signatures [1], timings between two keystrokes [13],
and statistical constraints of English language from sound
recordings [32]. Electromaganetic emanation of keyboards
is also studied for keylogging [29].

Michal Zalewski [31] takes advantage of the thermal residue
of finger left on the pressed keys on a keypad in order to in-
fer typed keys. Since the thermal residue on the keypad
will persist within up to approximately five to ten minutes,
the attacker can approach the keypad after the password
was entered and use a thermal imaging camera to detect
the individual keys tapped by the user. Mowery et al. [19]
analyzed the effectiveness of this attack from three separate
aspects, including keypad surface materials, the diversity of
body heat between people using the keypads, and the scal-
ability of the attack. The order of the password characters
can be deduced from which key is “hotter”.

This paper addresses a problem different from the smudge
attack [2]. Our fingerprint attack targets tapped passwords
via a keypad instead of graphical passwords in [2].

3. FINGERPRINT ATTACK AGAINST TOUCH
SCREEN

In this section, we present the basic idea of the fingerprint
attack and elaborate the detailed workflow of the attack, in-
cluding preprocessing, preserving fingerprints and mapping
fingerprints to passwords.

3.1 Basic idea
The password tapped by a user on a touch-enabled device

can be inferred through the fingerprints left on the surface of
the touch screen, and this causes the user’s privacy leakage.
Due to residues of oils left in the shape of the friction ridges,
the impressions of a user’s fingerprints can be left behind
on the surface of the touch screen after the user tapped
the touch screen. We can identify the relevant positions of
fingerprints on the screen and infer the specifical tapped keys
in order to deduce the user’s password.

Figure 4 illustrates the basic workflow of the fingerprint
attack to reveal the user’s password from fingerprints left on

a touch screen. We take iPad as an example to explain the
basic idea.

• Preprocessing: an attacker dusts the surface of iPad
with appropriate fingerprint powder to reveal the de-
tail of the fingerprints on the touch screen.

• Preserving fingerprints: a camera such as an iPhone
camera is used to take two photographs, the fingerprint
image and the keypad image by turning off/on the
backlight. The reason for using the two-photographs
strategy is that it caters to various scenes. For exam-
ple, a touch screen can be full of fingerprints. By tak-
ing photographs, the attacker can analyze them care-
fully at home.

• Mapping fingerprints to keypad: the attacker maps the
fingerprints in one image to the keypad in the other
image and recover the tapped keys.

The upper half of Figure 4 shows a pragmatic example of
the workflow. A user taps numeric keys {2,4,6,8} on iPad
to unlock the screen. An attacker physically approaches the
iPad, preprocesses and preserves the fingerprints. Finally,
the attacker compares the two images and maps the posi-
tions of fingerprints to positions of keys on the keypad in
order to recover the tapped keys for unlocking the screen.
Note: the gray areas in the far right image at the upper half
of Figure 4 are excluded keys.

Figure 4: Workflow of the Fingerprint Attack

In the rest of this section, we will discuss these three steps
in detail and discuss the problem of differentiating finger-
prints from multiple persons sharing a device at the end of
this section.

3.2 Preprocessing
Ridges in human skin are responsible for the existence of

fingerprints and oily residues of tapping fingers on a touch
screen may not always produce visible fingerprints [18]. In
our scenario, we want to retrieve fingerprints with enough
ridge details so that we may differentiate fingerprints from
multiple persons sharing a device and ease the difficulty of
inferring passwords. Therefore, we adopt the dusting strat-
egy used in a crime scene investigation and apply fingerprint



powder to a touch screen surface in order to reveal the fin-
gerprints.

We need to carefully choose fingerprint powder for quality
fingerprints and ease of photographing. Two principles are
developed through our experiments for dusting these mirror-
like touch screens.

• First, different powders may only be good for specific
environments. In our case, a variety of fingerprint pow-
ders can be used on the smooth and dry touch screen
surfaces, including aluminum powder, bronze powder,
cupric oxide powder, iron powder, titanium dioxide
powder, graphite powder, magnetic powder, and flu-
orescent powder.

• Second, the powder should be in best contrast with the
background. Accordingly, we choose bronze or white
powder, the most common fingerprint powder used on
a dark background for the contrast effect.

3.3 Preserving Fingerprints
After applying the fingerprint power, we should be able to

photograph visible fingerprints on the touch screen. Since we
will design algorithms to automatically map fingerprints in a
fingerprint image to a keypad, reflections such as the camera
itself is not desirable in fingerprint images. We found that
with appropriate lighting, digital single-lens reflex (DSLR)
cameras can almost completely remove those undesirable
reflections. Figure 5 shows the operation platform with a
DSLR camera mounted on the top of the frame. Figure 6
shows a set of high-quality fingerprints on iPad, taken by a
DSLR camera.

Figure 5: Operation Table with a DSLR Camera

Since a camera phone is more portable and convenient
than DSLR, we select the camera phone such as the iPhone 4
camera to take photographs. With appropriate photograph-
ing and imaging processing techniques, most reflections can
also be removed and clear fingerprints can be photographed
with such a common-place camera, as shown by our experi-
ments in Section 4.

3.3.1 Taking Photographs
Once the visible fingerprints can be observed after dust-

ing, we first turn off the backlight of iPad and choose the
camera phone (or digital single-lens reflex (DSLR) camera)
to take photographs of the fingerprints. We now present the
principle of taking fingerprint photographs, and then discuss
the practical issues and our solutions.

Figure 6: Fingerprint on iPad Taken by a DSLR
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Figure 7: Diffuse Reflection

To better understand the image formation of the finger-
prints on the camera, we investigate the diffuse reflection of
the fingerprint as shown in Figure 7. The visibility of ob-
jects is primarily caused by diffuse reflection of light and the
diffusely-scattered light forms the image of the object in the
observer’s eye [16]. In diffuse reflection, when incident rays
hit a surface, they are reflected at many angles. In specular
reflection, incident rays are reflected at one angle. The sur-
face of many common materials, such as the touch screen,
exhibits a mixture of diffuse and specular reflection. Since
the diffuse reflection of light from the object forms the im-
age of the object in the observer’s eye, we can observe the
image of the object. By contrast, if the light of an object
is specularly reflected on the surface and diverged, the vir-
tual image of the object in the observer’s eyes appears to
converge in or behind the surface.

To derive clear fingerprint photographs, the optical com-
ponent of a camera should receive more diffuse reflection
of light from the fingerprint. The powder brushed on the
surface of iPad can enhance the diffuse reflection of the fin-
gerprints. We can also use strong light to better illuminate
the fingerprints for better diffuse reflection and clearer fin-
gerprint photographs.

After preserving the fingerprint, we should keep the posi-
tion of our camera and turn on the iPad to take a picture
of the keypad in order to accurately map the fingerprints to
the tapped keys.



Figure 8: Specular Reflection

3.3.2 Practical Issues and Solutions
In practice, as a result of the specular reflection on the

surface, the reflection of the camera on the screen can also be
photographed. In this case, the virtual image of the camera
and image of fingerprints will mix together and it is difficult
to identify the clear fingerprint from the photograph. To
deduce correct password characters, we need to eliminate
the virtual image of the camera. Figure 8 shows how the
a virtual image forms. Assume a point source of light is
placed at O with a distance p in front of the surface. Light
rays leave the source O and are reflected from the surface
and continue to diverge, but they appear to us to come from
a point I behind the mirror. We always locate images by
extending diverging rays back to a point from which they
appear to diverge. Because the rays in Figure 8 appear to
originate at I , which is a distance q behind the mirror, then
we conceive point I as the location of the image. This type
of object image is called virtual image.

According to the principe of forming a virtual image on
the touch screen, a camera will photograph the virtual im-
age of itself if the specular reflection rays from the camera
are captured by the optical component of the camera. Intu-
itively, we can keep the camera from being illuminated in or-
der to avoid forming a virtual image on the screen. However,
in practice, it is difficult to evade illuminating the camera
and the virtual image of the camera on the photograph.

We can adopt photographing techniques to eliminate the
virtual image of the camera as below:

• Autofocus by luminance contrast. Contrast detection
is a common technique used in photographing. With
autofocus, the camera adjusts its contrast method in
focusing an object, senses luminance from all direc-
tions and autofocuses on the brightest point. In the
worst case that inadequate light is provided, we can
use a LED flash built into the camera to produce a
flash of artificial light, and the luminance of reflected
flash light rays on the screen is stronger than that of
the reflected light rays from the camera. By using
the contrast method, the camera can autofocus on the
brighter part, i.e., fingerprints, illuminated by the LED
flash rather than the virtual image of camera. Thus,
we can eliminate the camera virtual image. [16]

• Depth of Field (DOF). When a lens focuses on a dis-
tance, objects within a range will appear sharp to our
eyes. Depth of field is the distance between the near-
est and farthest objects that appear sharp in a scene
[7]. Beyond DOF, objects will appear blurry. In order
to make the fingerprints sharp and the camera vir-
tual image blurry, we can select an appropriate small
DOF in order to de-emphasize the virtual image. If
the distance between the virtual image and the cam-
era exceeds the camera’s focus distance, the virtual
image can be de-emphasized so that we can avoid pho-
tographing a clear image of the camera, but derive a
clear fingerprint photograph.

As mentioned before, we can choose either a camera phone
or DSLR to photograph fingerprints. As a matter of fact,
the camera phone can only use the first technique to de-
emphasize the virtual image, while DSLR can use both tech-
niques. However, according to our experiment in Section 4,
we can obtain clearly visible fingerprints using the camera
phone. Since the camera phone is more portable and conve-
nient than DSLR, we select the camera phone to take pho-
tographs. We also use various image processing techniques
to remove the background including the camera virtual im-
age from the fingerprint photograph.

3.4 Mapping Fingerprints to Keypad
We first introduce the basic idea of mapping fingerprints

to a keypad and then discuss the selection of thresholds to
correctly recognize all the password characters.

Algorithm 1 Fingerprints Image Processing Algorithm

Require: An image with fingerprints
1: Resize original image into 800× 600 pixels;
2: Convert resized image into grayscale image;
3: Apply Laplace edge detection algorithm [27] to grayscale

image to sharpen fingerprints and eliminate the back-
ground;

4: Apply maximum between-class variance method [21] to
derive binary image: Fingerprint is in white and

background is in black;
5: Divide binary image into 20× 20 pixel grids;
6: Construct fingerprint matrix A = {aij |0 ≤ i < 40, 0 ≤

j < 30} where aij is the number of white points in the
grid at column i and row j.

3.4.1 Basic Idea of Mapping
To automatically retrieve password characters, we first

process the fingerprint and keypad images (taken at the
same position) and derive what areas (represented by a ma-
trix) fingerprints and keys (of a keypad) occupy in the corre-
sponding images. In our algorithms in this paper, we often
take iPad as an example and algorithms for other devices
are similar. Algorithm 1 shows how we extract fingerprints,
and construct fingerprint matrix A after converting the fin-
gerprint photo into a binary image and dividing it into grids.
Each number in matrix A stands for the number of white
points in each grid. The larger area a fingerprints occu-
pies, the larger the number is in the matrix. Algorithm 2
uses similar procedures to derive the mapping between keys
(km) and grids. A grid set Km records the set of grids that
km occupies and is the area where km is located.



Figure 9: An Example of Fingerprints Image Processing

Figure 10: Result of Fingerprints Image Processing

Figure 9 shows an example of practically using Algorithm
1 to process a fingerprint image. Four subpictures represent
the results of Step 1 to Step 4 in the algorithm respectively.
Figure 10 represents the number of white dots in each grid
according to Step 5 and Step 6. It is obvious that the number
of white dots in certain regions where a user has tapped
is much larger than that of other regions. Thus, we have
extracted the position of fingerprints on the touch screen.

Algorithm 2 Keypad Image Processing Algorithm

Require: An image with keypad
1: Resize original image into 800× 600 pixels;
2: Convert resized image into grayscale image;
3: Apply minimum error method [3] to grayscale image and

derive binary image;
4: Derive the area Z(km) corresponding to key m in the

binary image, where 0 ≤ m ≤ 9;
5: Divide binary image into 20 × 20 pixel grids and derive

grid matrix B = { bij | 0 ≤ i ≤ 40, 0 ≤ j ≤ 30 } where
bij is the grid at column i and row j ;

6: Derive grid set Km for key m, Km = {bpq | 0 ≤ p <

40, 0 ≤ q < 30, bpq ∈ Z(km)}

Figure 11 shows an example of pragmatically using Algo-
rithm 2. Three subpictures represent the results of Step 1
to Step 3 in the algorithm respectively. We found that the

unlocking screen password dialog box of Mac IOS are of the
same form and size, and hence all areas are of fixed length-
width ratio, as shown in Figure 12. The numeric digits in
Figure 12 show the size of length, width, left margin and
right margin of the input boxes and keys. The unit of length
in Figure 12 is centimeter. Based on this ratio, we used rel-
ative position to locate each key of the soft keyboard. Since
white input boxes have obvious characteristics as shown in
Figure 11 (c), we first figure out location, length, width, left
margin and right margin of four input boxes by scanning the
picture to determine the grids of the four white input boxes.
Second, according to the grids of the four white input boxes
and the ratio of unlocking screen password dialog box, we
are capable of figuring out the grids of each key.

With fingerprint matrix A and a key’s grid set Km, we can
map a fingerprint to a key km. We can derive the total num-
ber of white points (corresponding to a fingerprint) Nm in a
key area Km. We sort the sequence N = {N0, N1, . . . , N9}
in the decreasing order. Recall that we may not know the
password length and the number of repeating characters in
a password. We propose to select candidate keys from the
sequence N based on a threshold and will discuss the thresh-
old selection below. Astute readers may come up with this
question: the border of a numeric key may not match well
with that of girds, and that is to say a numeric key may not
occupy natural numbers of girds. The problem can be solved



Figure 11: An Example of Keypad Image Processing

by dividing the original picture into smaller grids. For ex-
ample, we divide a 800× 600 pixels picture into 4× 4 pixels
grids which are of 200 columns and 150 rows. The extreme
case is that each pixel in the picture represents a grid.

3.4.2 Detection Rate and Threshold Selection
Our evaluation metric for inferring a password from fin-

gerprints is detection rate, the probability that only and all
characters of the password are recovered from fingerprints.
Our problem is: given N = {N0, N1, . . . , N9}, how can we
select an appropriate approach to correctly recognize pass-
word characters? Recall that Ni (0 ≤ i ≤ 9 in the case of
iPad and iPhone’s unlocking password) is the total number
of white points in a key area Km, and fingerprint powder
may be sprayed onto the whole keypad and white points
(supposedly corresponding to pressed keys) may show up in
un-pressed key areas.

Clustering Based Approach. Intuitively, we can use a
clustering algorithm to separate tapped keys from untapped
keys. We select the well-known clustering algorithm, K-
means cluster algorithm. The K-means clustering algorithm
can classify the keys, i.e., N = {N0, N1, . . . , N9}, into two
categories: the tapped keys and untapped keys, that is,
K = 2. In our experiments, we observed that the more keys
pressed, the smaller detection rate of using the K-means
algorithm to cluster correctly. Therefore, the k-means clus-
tering algorithm is not a good choice in our case.

Threshold Based Approach. Given a low detection
rate by the K-means algorithm, we propose a threshold
based approach to automatically identify the tapped keys on
the screen. We first need to determine a threshold, press-
threshold, to recognize pressed keys. Press-threshold λm for
a key km is defined as follows,

λm =
Nm −min9

i=0 Ni

max9i=0
Ni −min9

i=0 Ni

. (1)

Equation (1) derives a normalized threshold, considering
that different people have different habits tapping on a key-
pad. Again, here we use a 10-digits keypad as the exam-
ple. However, our approach can be extended to other cases
straightforward. Our experiments actually examined gen-
eral software keyboards.

Figure 13 shows how we derive the press-threshold. We set
press-threshold from 0 to 1 with a fixed step length of 0.01.
The detection rate of each press-threshold is shown in Figure
13 where the press-threshold corresponding to the highest
detection rate is the optimized one. In our experiments, we

Figure 12: Length-width Ratio of a standard un-

locking Screen Password Dialog Box of Mac IOS
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Figure 13: Deriving Press-threshold

found that a press-threshold of 0.33 produces an optimized
detection rate for pressed keys.

A key may be pressed multiple times and we also need
to select the overlap-threshold and determine what keys are
pressed multiple times, after pressed keys are already rec-
ognized by the press-threshold. For example, if a password
length is 4, after determining that 3 keys have been pressed
by using press-threshold, we can figure out that the key with
maximumNi is the repeating key. If we find that 2 keys have
been pressed, we need to determine the password has a 2-2
pattern (i.e. two keys are pressed and each is pressed two
times) or 3-1 pattern. The overlap-threshold is defined as
follows,

Φ =
max9

i=0Ni −min9

i=0Ni

second max9

i=0
Ni −min9

i=0
Ni

(2)

Figure 14 shows how we derive the overlap-thresholds.
We set the overlap-threshold from 0 to 1 with fixed step
length of 0.01. Figure 13 shows the detection rate in terms
of overlap-threshold for determining whether the key has
been pressed once or twice and detection rate in terms of
overlap-threshold for determining whether the key has been
pressed twice or three times. The overlap-thresholds cor-
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Figure 14: Deriving Overlap-threshold

responding to the highest detection rate are the optimized
overlap-thresholds we want. In our experiments, we find
that overlap-threshold for determining whether the key has
been pressed once or twice is 1.19. Overlap-threshold for de-
termining whether the key has been pressed twice or three
times is 1.39.

3.5 Differentiating Fingerprints from Multi-
ple Persons Sharing a Device

In case that a touch-enabled device is shared with multiple
people, it is necessary to confirm that fingerprints in the
sensitive region such as the area of keypad belong to the
same person. We may also classify those fingerprints into
groups, each of which belongs to one person. This can ease
the effort of inferring the password.

Depending on the size of the on-screen keyboard and indi-
vidual habit, people may use either finger tip or a whole

finger (whose core is kept in the fingerprint). We have
tested both types of fingerprints in our experiments. Finger-
prints consist of pattern of ridges and valleys on the surface
of a finger [18]. Figure 15 illustrates the ridges and valleys
of a fingerprint. The white lines (formed by fingerprint pow-
der) are ridges, between which black space is valleys. Figure
15 also shows three basic patterns of fingerprint ridges, i.e.,
arch, loop and whorl. Each fingerprint can be determined by
the overall structure (arch, loop and whirl) and local ridge
structure called minutiae points such as a ridge bifurcation
or a ridge ending. Algorithms for fingerprint matching are
based on either minutiae or global structures and local land-
marks. Minutiae are ridge ending and ridge bifurcation and
algorithms based on minutiae utilize relative positions of
minutiae pairs.

                   Arch          Loop                                Whorl 

Ridge Valley

Figure 15: Arch, Loop and Whorl

We have tested three algorithms to match and classify
fingerprints: filterbank [12, 26], adjacent orientation vector
(AOV) [11, 24] and correlation-filter [28, 25]. The filterbank
approach requires the local core of each fingerprint and is
not good for matching fingerprints without cores such as
finger tips. The AOV approach uses the number of possible
local minutiae pairs to match fingerprints. Since AOV does
not capture the global structure, its performance depends on
the detailed information of the fingerprints. The correlation-
filter approach uses fast Fourier transform to catch both
global and local structures. A more detailed discussion of
these three techniques is given below.

• Filterbank-based approach utilizes both local ridge and
valley anomalies and global patterns. It first selects a
reference point and the region of interest around the
reference point in the fingerprint image, divides the re-
gion of interest into sectors, and normalizes each sector
to remove noise caused by optical sensors and gray-
level deformation. A bank of Gabor filters are then
used to filter each sector in eight different directions
and transform local discriminatory information in each
sector into biorthogonal components in terms of spa-
tial frequencies. In this way, a feature vector is formed
by collecting all the local features and is called Finger-
Code. The simple Euclidean distance between Finger-
Codes can be used to match two images. Refer to [26]
for an example implementation of the filterbank-based
approach.

• Adjacent orientation vector system uses only minutiae
pairs in the fingerprint matching process. In this ap-
proach, all ridges are systematically numbered. AOV
(adjacent orientation vector) is a vector consisting of
the difference between adjacent minutiae orientations,
and ridge number of adjacent minutiae pairs. To match
two fingerprints, the algorithm first computes the AOV
score (a distance) of all AOVs in two fingerprints. Then
a preliminary matching algorithm adds a pair of AOV
into the matched pair set if their AOV score is within
a threshold. If the number of matched pairs is more
than a threshold after preliminary matching is done,
a fine matching algorithm is performed. Fine match-
ing is able to process deformed minutiae and adds new
matched AOV pairs into the matched pair set. Fi-
nally AOV scores of all matched pairs are summed.
If the overall score is more than a threshold, the two
fingerprints are matched. Refer to [24] for an example
implementation of the AOV-based approach.

• We found that the correlation-filter based method per-
forms well consistently for both whole-finger and finger-
tip fingerprints. It works in our case as follows: Fourier
transform is applied to each input image and captures
local ridge structure, ridge frequency, and global ridge
pattern. A correlation filter is the Fourier transform of
a template, which is a training image of the finger of in-
terest. A person’s finger is enrolled by this correlation
filter. In the verification stage, Fourier transform of a
test image is derived and multiplied by the correlation
filter corresponding to the finger of the person of inter-
est. When the test image and template are matched,
a large inner product is expected. Refer to [25] for an
example implementation of the correlation-filter-based
approach.



4. EVALUATION
We have implemented the fingerprint attack against touch-

enabled devices including iPad 2, iPhone 4s and Android
Phone (HTC G7). In this section, we use real-world experi-
ments to demonstrate the feasibility and effectiveness of the
fingerprint attack.

4.1 Experiment Setup
We performed experiments on iPad 2, iPhone 4s and An-

droid Phone (HTC G7) to infer the screen unlock PIN/pass-
word/pattern and passwords for applications such as Apple
Store. In Apple IOS, a user inputs a 4-digits screen unlock
pin (denoted as SUP) on a 12-button keypad. Android has
the PIN mode (denoted as PINM), password mode (denoted
as PM). A 12-buttons keypad is used in the PIN mode, while
a 26-letter keyboard is used in the password mode. A pass-
word needs to be at least four characters in Android. The
application password (denoted as AP) is input on a 26-letters
keyboard in both Android and IOS and a user can switch
the keyboard between the letter panel and number panel. In
our experiments, we use the letter panel to input the pass-
word and will explore issues caused by the panel switch in
our future work.

Variable password length introduces complication in in-
ferring passwords from fingerprint images. We address two
cases. In the case of fixed-length password, we assume the
attacker knows the password length. For instance, the screen
unlock pin length in IOS is four. Based on the number of
repeating characters, we classify the 4-digits IOS screen un-
lock pin into five patterns: 1-1-1-1, 2-1-1, 2-2, 3-1, and 4-0.
The number in each pattern is the repeating times of a pin
digit. Therefore, pattern 1-1-1-1 refers to a pin of 4 different
digits and 4-0 is a pin with 4 repeating digits. In the second
case, we assume that the attacker does not know the pass-
word length and all password characters are different. The
attacker has to infer the password length to derive the pass-
word. We leave the discussion of inferring variable-length
passwords with repeating keys as our future work.

4.2 Detection Rate
Our experiments show that the fingerprint attack can work

effectively and efficiently. We performed 130 groups of ex-
periments to infer the IOS unlock pin from fingerprint im-
ages. On iPad 2 and iPhone 4s, we conducted 30 groups of
experiments for 1-1-1-1, 2-1-1, 2-2, 3-1 and 4-0 pins respec-
tively. Figure 16 shows that detection rate for iPad 2 and
iPhone 4s is as high as 68.5% and 63.3% respectively.

For the PIN mode and password mode in Android, we set
password length as 4, 5, and 6, and conducted 10 groups
of experiments for each length. 2 groups of experiments
for each length contain repeating characters. Note that a
12-button keypad is used in the PIN mode and a 26-letter
keyboard is used in the password mode. Figure 16 shows
that detection rate in the PIN mode and password mode
for a fixed length password (4, 5, and 6 characters) is as
high as 60.0% and 56.6% respectively. We also conducted
30 groups of experiments for inferring passwords without
repeating characters. Detection rates for the PIN mode and
password mode can reach 70.0% and 64.3% respectively.

For application password, we use iPad 2, take Apple Store
as an example and conducted 90 groups of experiments. An
Apple Store account requires a password of at least 8 char-
acters. The lifetime of a session in Apple Store is 15 minutes

due to default settings. After timeout, the user has to log in
again with the given account name. We set password length
as 8, 9, and 10, and performed 30 groups of experiments for
each length. 6 groups of experiments for each length con-
tain repeating characters. Figure 16 shows that detection
rate for fixed-length passwords with repeating characters on
iPad 2 is 47.8%. After removing the 6 groups of passwords
with repeating keys, detection rate for passwords without
repeating characters on iPad 2 is 52.8%.

Figure 17 compares detection rate for pins of five patterns,
derived from 130 groups of experiments on iPad 2 for infer-
ring the screen unlock pin. It can be observed that with the
threshold-based strategy in Section 3.4.2, detection rate can
reach more than 70.0%. It demonstrates that this strategy
can deal with overlapped fingerprints effectively.

Figure 18 shows detection rate in terms of password length.
We used 10 groups of experiments for each length in Android
in the password mode. Detection rate can reach more than
50%. We can also observe that detection rate is not sensitive
to password length in the fingerprint attack.

Figure 19 illustrates that the detection rate of pressed key
by K-means is far lower than detection rate by the threshold
based approach. This observation verifies our analysis in
Section 3.4.2.

4.3 Differentiating Fingerprints from Multi-
ple Persons Sharing a Device

Recall that Filter-bank approach needs the local points
and get the whole structure and it is not effective to verify
the fingertips. Adjacent orientation vector system has a poor
performance when there exists some dominant fingerprints
with rich minutiae. As dominate fingerprints have more
similar minutia pairs when verified with other fingers, it is
highly possible that the other fingertips will be recognized as
the dominate fingerprints. In comparison, correlation-filter
based method does not require local core points to get the
global structure and it can also get the local structure.

We adopted the correlation-filter approach for fingerprint
comparison and conducted two groups of experiments to
evaluate performance of differentiating fingerprints from mul-
tiple persons sharing a device. In the first group of experi-
ments, we assume training fingerprints from people sharing
a device are available. This assumption refers to scenarios
where an attacker knows victims and collects training finger-
print images before-hand from objects touched by victims.
We collected fingerprint images from 10 fingers of 6 people.
Each finger is used to input a 4-digits pin on iPad 2 and
produces 4 fingerprint (sub-)images. For each person, we
choose one fingerprint image from each finger and use the
10 fingerprint images for 10 fingers as a training set. We
choose one person as the target. The remaining 120 images
are divided into 6 test sets with 3 fingerprint images for each
finger of a person. True positive rate is defined as the prob-
ability that the fingerprint of the target is identified as one
belonging to the target. False positive rate is defined as the
probability that the testing image, which doesn’t belong to
the owner, is identified as one belonging to the target.

Figure 20 shows the true positive rate and false positive
rate for the first group of experiments. The correlation fil-
ter performs better with the whole-finger images than with
finger-tip images. The false positive rate for finger-tips is
very high and can reach more than 40% in the case of dif-
ferentiating two people. This confirms our analysis: whole
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fingers have distinguishable global structures and richer lo-
cal structures and are easier to identify.
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In the second group of experiments, we want to test if fin-
gerprints on a touch screen can be grouped together without
training sets. There are 6 test sets from 2 fingers (index and
middle fingers) of 3 persons, and 4 fingerprint images are
from one finger in each test set. We verify whether two
fingerprint images are from the same finger by peer compar-
ison. Table 1 shows the true positive rate and false positive
rate. Tests with whole fingers has much higher true posi-
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Figure 19: Detection Rate by K-means Clustering

Table 1: Differentiating Fingerprints from Multiple

Persons Without Training Fingerprints

Whole Finger Finger Tip
True Positive 69.44% 44.44%
False Positive 0.63% 0%

tive rate than tests with finger tips since whole fingers have
more significant global structure information and richer lo-
cal details than fingertips. Tests with both whole fingers
and finger tips produce low false positive rate. Therefore,
if this method verifies two fingerprint images match, it is
highly possible that these two fingerprint are from the same
finger. Therefore, we can identify the passwords tapped by
this finger on the touch screen.

5. DISCUSSION - COUNTERMEASURE
In this section, we briefly discuss possible countermeasures

protecting touch-enabled devices against the fingerprint at-
tack.

To defend against fingerprint attacks, one can ensure the
physical security of the touch enabled devices and the en-
vironment where such devices are deployed. Surveillance
cameras can be deployed to ensure that malicious behavior
is captured. We may also make photographing fingerprints
on touch screen hard. People have suggested that abrasive
membrane is able to reduce the smudge of fingerprints on
the touch-enabled devices. However, ridges in human skin
left on the surface are still visible after dusting strategy in
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our experiments, and thus it is ineffective to use an abrasive
membrane to defend against attacks. Of course, one obvi-
ous approach to remove fingerprints on touch screen is to
clear the screen with appropriate cloth after each use. The
approach may not be very convenient in many scenarios.
A special glass coating technique such as [20] may also be
used to prevent fingerprint on the surface. The effectiveness
of this anti-fingerprint coating needs further evaluation and
we will explore this technique in our future work.

One effective countermeasure against fingerprint attacks
is to randomize the software keyboard on touch-enabled de-
vices. A randomized keyboard may not be convenient in
many applications. We suggest that at least the software
keyboard for inputting sensitive information including pass-
words and pin numbers should be randomized in an appro-
priate way. A randomized keyboard can be implemented
in two fashions: the operating system implements it or an
application itself implements one. We observed very few ap-
plications today implement a randomized software keyboard
on smartphones.

If a randomized keyboard cannot be used, here are some
compromised solutions. To Mac IOS, we suggest the system
increase the length of the unlocking screen password which
is four now and apply safer screen unlock strategies. To An-
droid, in the PIN mode, we suggest users to contain overlap
numeric keys in the password because non-fixed length pass-
word with overlapping numeric keys is able to definitely and
sharply drop the detection rate of the fingerprint attack. In
the password mode, we suggest users to include both num-
bers and letters in the password because numbers and letters
in the password mode are from different panels switched by
the shift key so that the attacker can not distinguish the
panels from which fingerprints on the surface are left.

6. CONCLUSION
This paper investigates fingerprint attacks against touch-

enabled devices to infer user pins or passwords from finger-
prints left on a touch screen. In the fingerprint attack, an at-
tacker dusts the touch screen and reveal hidden fingerprints.
In our research, iPhone is used for photographing the finger-
print and keypad. Various image processing techniques are

used to process the two images, sharpening fingerprints and
removing the background in order to automatically map the
fingerprints to specific keys and recover password characters.
We performed extensive experiments and the results show
that the fingerprint attack works effectively and efficiently.
We also briefly discussed countermeasures to the fingerprint
attack and suggest that a randomized software keyboard is
a feasible solution while most touch-enabled devices such as
smartphones have not implemented this functionality.
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