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Abstract 

Surprisingly little is known about the specific character of 

the depreciation of automatic speech recognition (ASR) in 

reverberation— its primary acoustics causes (e.g. room 

geometry, reverberation strength) or speech effects (blurring 

of syllables, plosives, consonants). The focus of this study is to 

precisely quantify the depreciation of speech recognition 

accuracy for reverberant signals using a black box experiment 

to vary reverberation characteristics and observe speech 

recognition accuracy. The methodology tests two speech 

recognition platforms on a recognition task of similar 

sounding word lists. A range of reverberant settings was 

simulated by convolution with an impulse response. The 

recognizers had the least reverberant recognition accuracy for 

words which only differed by their ending consonants. The 

depreciation of recognition accuracy from early reflections 

alone was lower than the overall room effect; however the 

overall depreciation with respect to the absorption coefficient 

was well predicted by the strength of the reverberant tail. The 

results were compared to the results of prior research. 

Index Terms: automatic speech recognition, 

reverberation, comparative analysis 

1. Introduction 

The main barrier to an ASR implementation in new 

applications is source quality. An ASR system is mainly 

trained to respond in an ideal setting—noiseless and anechoic. 

When source material is not ideal due to noise or 

reverberation, the system’s accuracy decreases dramatically. 

While ASR was born out of speech and acoustics 

sciences research, the two fields often operate on separate but 

parallel planes.  With regards speech in reverberation, the 

acoustics sciences community is concerned with arriving at a 

more precise definition of the problem.  The ASR community 

takes a largely engineering-based iterative design approach 

which is leading towards a maximized efficiency of the current 

methods. The two fields have much more they could share: a 

well-documented and scientific characterization of the specific 

problems facing ASR would better inform the design process 

and point to the specific aspects of the algorithms which need 

improvement. There is also the possibility that the results of 

further collaboration could point to an entirely new approach 

to the recognition process, perhaps a process which is less of a 

statistical computerized measurement algorithm and closer to 

the current understanding of neurological processing of 

speech. 

As part of this overall goal, the focus of this research is to 

quantify the degradation of ASR algorithms in reverberant 

settings. The research attempts to add to the literature by 

combining an understanding of ASR systems and speech 

sciences with a basis and approach in the science of 

architectural acoustics. This research adds precision to the 

general conclusion that reverberation degrades recognition 

accuracy. It attempts to evaluate which specific phoneme 

properties are disrupted and by which specific room acoustics 

properties. It is hoped that this will help the current state of 

ASR development, by adding precision to the discussion of the 

problem, and by suggesting the direction to possible remedies. 

This paper begins with an introduction to the motivation 

and research focus of the study. It continues with a summary 

of the room acoustics research into human speech perception, 

as well as a review of the treatment of room acoustics in ASR 

research. Next, the document presents the methodology used 

in the current experiment. The results are then presented and 

discussed. Finally, conclusions are drawn and 

recommendations for the application of the findings to future 

research are suggested. 

2. Background in Automatic Speech 

Recognition 

The current practice of automatic speech recognition is 

based on computer automated statistical analysis of several 

acoustic parameters in order to match the sounds to understood 

words. The process begins with matching the acoustical data 

of a known text with a direct microphone signal or digital 

recording device for computer input to train the system. For 

the system to work properly, the acoustic signal must be in a 

nearly anechoic setting with little to no background noise. The 

training process sets up a model of the speech parameters of a 

specific user, which will be compared to further input for 

recognition. Statistical methods are used to compare the 

acoustical parameters of the input speech to the user-specific 

vocabulary to find the most likely word or phrase being said.  

The following description of the speech recognition 

process is based on Plannerer‘s textbook on the subject [1]. 

The process of speech recognition focuses on tracking the 

important acoustic parameters, the parameters that convey 

verbal information. Some parameters (e.g. the fairly average 

fundamental frequency and whether it lies in a man’s or a 

woman’s octave range) are irrelevant to decoding the speech 

signal. Specifically, the short time frequency spectra of the 

speech signal need to be calculated and tracked as they change 

from a consonant to vowel to silence. 

The computer reads an acoustic signal in successive but 

overlapping time windows to track the speech changes. These 

windows are typically 10–20 ms long and are varied over 

several possible locations to maximize their placement relative 

to the words being decoded. A frequency transformation is 

performed on each window of data to observe the changing 

frequency spectrum. A mel spectral transformation is applied 

to produce a perceptually based frequency spectrum. 

The constant fundamental frequency and its harmonics 

are removed by a process called cepstral smoothing. For 

speech signals, the fundamental frequency is essentially 

constant over a 20-ms window period, and the harmonics are 



consistently related to the fundamental based on the shape of 

the human vocal tract. The fundamental frequency and 

harmonics are spaced at integer multiples, (exponentially 

spaced intervals in the linear frequency domain. A cepstral 

transformation treats the power spectrum (magnitude, not 

phase) as a time domain signal and applies a Fourier trans-

form, to produce a frequency spectrum of the spectrum, or 

cepstrum. This quefrency domain is in essence in the time-

domain, though as arrived by this process it does not preserve 

all phase information. In treating the frequency spectrum as a 

time domain signal, it turns the regularly spaced peaks of the 

harmonics into a single peak in the quefrency domain. A solid 

line sufficiently above the peak of fundamental harmonic 

spectral content shows the uppermost cutoff point, under 

which the spectrum is zeroed out and removed. This is a sharp 

low-pass filtering of sorts via resetting the Fourier coefficients. 

Finally, an inverse frequency transform is applied to the 

cepstrum to produce the smoothed out spectrum. The resultant 

frequency spectrum is a representation of only short term 

spectral attributes of speech [1]. This spectral magnitude forms 

the mel-frequency cepstral coefficient (MFCC) at each 

frequency, in the same way that Fourier coefficients represent 

linear spectral magnitude. 

The acoustical features which are important to the 

recognition task comprise a feature vector. Specifically, the 

MFCCs, as derived from the previous process, and their time 

derivatives are the main parameters of the feature vectors 

which are calculated for every window to track the speech 

features. The first order time derivative of evenly spaced 

windowed coefficients is the difference between time-

sequential feature vectors. Each phoneme (the smallest 

individual unit of speech sound in a language) or word in a 

vocabulary has a specific feature-vector series in time. The 

feature vectors track the formants of the vowels, the time-

variant presence of white noise (from consonants), and the 

nature of their combination. The feature vector of the input 

sound is calculated and compared to the feature vectors of 

each vocabulary element to achieve maximum similarity or 

minimum vector space distance between the vectors. The word 

in the vocabulary which is nearest to the input word in this 

vector space is the word recognized.  

For speech, it is important for a word that is spoken faster 

or slower to be recognized as the closest to its match in the 

vocabulary. A matrix technique called dynamic time warping 

adjusts the feature vector comparison to account for the speed 

of pronunciation [2]. Basically, the time axis of the feature 

vector matrix allows for horizontal (same feature component, 

forward movement in time) or vertical (same unit of time, 

forward to next feature component). Thus a given input sound 

can travel through the feature changes faster or slower than its 

vocabulary model as long as every feature change is 

completed in the same sequence.  

Although the speech recognition system described above 

is plausible and implemented later in this research, for 

practical cases of speech recognition this method would 

necessitate the user producing a model (or ideally several) for 

every word in the vocabulary. Thus it is necessary in practical 

situations for the recognizer to come up with its own models 

of the feature vector for comparison. This process is a Hidden 

Markov Model (HMM) [3]. Markov probability is a process of 

conditional probability calculation through a matrix of 

potential conditions. Instead of containing each of the feature 

vectors of the vocabulary as they change in time, this HMM 

encodes the probability that each speech element moves to 

every other speech element in succession.  

Markov chains are tables of conditional probabilities 

which can be used to track any series of conditions to find the 

probability of an overall result.  Rather than a direct Markov 

process, the speech recognizers use a Hidden Markov Model. 

The Markov probability comparison runs in tandem with the 

speech feature vector calculation and the probability of each 

phoneme being represented by the series of feature vectors 

measured is calculated. The model decides the phoneme with 

maximum likelihood and returns that as the decision. The 

process is repeated on a macro level for producing words and 

sentences.  

For each successive feature vector, the independent 

conditional probabilities are multiplied to determine the 

probability of the series, while each series of feature vectors 

which arrives at the same phoneme are added. These include 

series with circular paths, where part of the path is the 

probability of the feature vector being followed by the same 

feature vector. Likewise, the probability of a word being said 

is based on the linguistic conditional probability of a phoneme 

combination, and the probability of a sentence is based on 

grammatical conditional probability of a word combination. 

The HMM uses Bayesian statistics to determine the 

probability that a given word was represented by a set of 

feature vectors based on the known probability of that word 

producing the feature vector. The basic formulation of Bayes 

Theorem is shown in Equation 2.5.  In this case, event A 

represents a phoneme model, and event B represents a specific 

feature vector measured. The probability that phoneme A is 

represented by feature vector B, P(A|B), is the quantity which, 

if maximized, will lead directly to the speech recognition of 

the feature vector. The three quantities on which this 

probability is based are the conditional probability of the 

feature vector given the phoneme, P(B|A) (as determined by 

the recognizer‘s vocabulary model and user training), and the 

overall probabilities of the phoneme P(A) and the feature 

vector P(B) being produced in general. In this case, the 

quantity P(B) is unknown but unimportant to the maximization 

task, since the feature vector under question is a constant for 

all speech recognition tasks [4].  

Thus, by maximizing the conditional probability quotient, 

the HMM determines the most likely phoneme that the feature 

vector represents. Likewise, HMM models and Bayesian 

statistics allow for word and grammar models at more macro 

levels. Taken as a whole, this process allows the HMM to 

form a speech model for a large vocabulary of words based on 

a small amount of training material, and is the most common 

implemen-tation of speech recognition today.  

3. Treatment of Room Acoustics in 

Current Research 

One of the problems with addressing the area of ASR in 

reverberant settings is the lack of precise room acoustics 

science in the discussion. Although many studies document an 

improvement in reverberant speech recognition based on an 

implementation strategy, they may not include a precise or 

thorough exploration of the effect on their developed 

techniques from basic reverberation parameters like 

reverberation time or room material properties. The following 

is a review of the experimental setups of a selection of ASR 

tests, the room acoustics parameters in their methodology, and 

an attempt to compare their results. 

Several of the papers do not give enough information to 

draw conclusions on the nature of the reverberation added. 

Takiguchi et al. only cite the source of the impulse response 

used and list its length, not giving any other relevant 

information on its properties [5]. The room acoustics-focused 

study by Pan et al., while precise in its analysis of the effects 

of reverberation on MFCCs, only uses one reverberation 



setting in its methodology and only says the testing facility has 

“moderate reverberation” [6]. Shamsoddini presents a two 

microphone segregation technique which uses temporal cues 

to imitate the precedence effect and harmonicity cues of the 

voice signal to suppress non-harmonic noise.  The 

methodology reported only lists the dimensions of the test 

space and shows the impulse response, but does not analyze it 

or describe the materials for any further inferences on the 

reverberation tested [7]. Without reporting the reverberation 

time, or a combination of room materials and dimensions, it is 

hard to be sure of the testing conditions for these studies. This 

makes it difficult to repeat the methodologies to either confirm 

or build on the findings of these studies. 

Many studies do list either the reverberation times or 

room parameters of their testing setups, however many of the 

tests use only a limited range of reverberant settings and do 

not make a controlled variation of the reverberant setting a 

primary focus of the methodology. Gelbart et al. test the HTK 

toolbox HMM recognizer with two reverberant impulse 

responses, listing the reverberation time of one of them [8]. 

Gillespie’s research on dereverberation shows the accuracy 

results for 6 reverberation times as they have removed some of 

the uncorrelated non-speech energy [9]. The Park et al. 

binaural dereverberation research analyzes the effect of two 

different reverberation times and two signal-to-interferer ratios 

[10]. Hatziantoniou tests the HTK toolbox recognizer with two 

real room settings measured directly with impulse response 

techniques in a classroom and reports the reverberation time 

and volume of the rooms [11]. Roman’s tests use linearly 

increased reverberation times to analyze the performance of 

their binaural segregation algorithm on suppressing noise in 

reverberant settings, though their methodology does not 

explore the effect of the reverberation times in the main ASR 

experiment [12]. Finally, Palomäki et al. have included a 

thorough evaluation of their methodology over a wide variety 

of specified room acoustics environments [13]. These several 

papers have taken steps to address room acoustics in their 

methodology, but the differences in and sometimes incomplete 

description of the reverberant conditions of their testing 

methodologies would still make the results hard to compare. 

As shown above, there is an issue of breadth, precision, 

and consistency in the application of room acoustics 

simulations to ASR testing procedures. Although some 

researchers perform a full room acoustics evaluation of their 

experimental setups, there is no standardization for reporting 

reverberation times, room material properties, or other room 

acoustics parameters. There was not found in any paper any 

mention of clarity, definition, or speech transmission index, 

which have been found to be helpful parameters in the human 

speech sciences community. The purposeful inclusion of more 

room acoustics parameters in the discussion of ASR 

development would not only help the discussion to be more 

informed of the principles behind the problem at hand, it 

would help researchers compare their results to one another 

and allow them to reproduce the experimental conditions. 

4. Methodology 

The methodology of this experiment entails imposing 

simulated room-acoustic situations on a set of input speech 

samples. The speech samples are run through an ASR platform 

and the average accuracy is determined over each room 

acoustic parameter. 

4.1. Automatic Speech Recognition Platform 

Two ASR platforms were tested in this research: Dragon 

Naturally Speaking® (commercially available recognizer) and 

a Matlab toolbox developed by Luigi Rosa [14].  The toolbox 

uses MFCC feature vector comparison with dynamic time 

warping to perform single word recognition.  While not 

precisely an HMM recognition process, it is a simplification of 

the process which may provide a more direct evaluation of 

how speech features are degraded in reverberation.  The 

Matlab toolbox also provides the flexibility to adapt the open-

source program into a specific implementation.  As a first step 

into exploring the exact nature of the effect of reverberation on 

speech recognition platforms; the basic experimental method 

outlined in Section 4.1 could easily be applied to other 

platforms in the future. 

4.2. Source Material 

The source material was a list of 300 words from the 

modified rhyme test (ANSI Standard S3.2 1989, see Appendix 

0).  The words are in 50 sets of 6 similar sounding words, 

which are typically presented to a human subject in a specific 

setting to determine the intelligibility of the speaker/listener 

communication path.  The subjects are given the set of words 

as the choices for identification of each word said, and the 

intelligibility is determined by how far above random guessing 

(1/6 accuracy) the subject accurately identifies the word 

spoken.  The speaker/listener communication path can contain 

an air path, electronic path, and/or visual cues.  It is usually 

evaluated in comparison to a setting where the speaker is 

sitting in front of the listener so all paths are optimal.  This is a 

100% recognition benchmark to evaluate by, in case there is 

confusion due to pronunciation or identification.  The sets of 6 

are similar one syllable words, starting and ending with a 

consonant, with a vowel in the middle. This list works well 

towards a targeted analysis of small phonetic changes within 

each set, but with broader scale statistical implications from 

averaging a significant number of recognition tasks together. 

 

4.3. Black Box Investigation Procedure 

The room acoustic settings for this experiment are 

modeled using a geometrical acoustics platform implemented 

by Braasch [15].  As previously described, the procedure for 

creating source material was to convolve impulse responses 

having a series of varied room acoustic parameters with 

anechoic recordings of the modified rhyme test material, in 

order to model the recognition of speech in a wide range of 

rooms.  The impulse responses used had a room size of 4 by 5 

by 3 meters, a source position of (2, 1, 1) m, and a receiver 

position of (1, 1, 1) m.  Although arbitrarily chosen, these 

parameters were thought to be fairly representative of the 

dimensions of a midsized conference room, a fairly typical 

speech recognition environment. 

Contrary to many speech recognition experiments 

focused on improving accuracy of the output, this experiment 

treats the speech recognizer as a constant (the system under 

test) and varies inputs to identify its characteristics.  The inner 

workings of the system are not called into question or 

attempted to be improved upon.  In this way the speech 

recognizer is treated as a black box, and the system 

identification task at hand is to show the effect of 

reverberation on its recognition accuracy. 

For the preliminary test the average absorption of all 

materials in the room were varied from 0% to 100% in 

increments of 5%.  The reverberation times for each average 

absorption are listed in Table 3, measured as T30 (an 

extrapolation of the best linear fit of the first 30 dB of decay to 

the 60 dB drop time).  Both the average absorption and the 

reverberation times reported represent values which were set 



across all octave bands.  Although a flat reverberation 

spectrum is an unrealistic room setup, having the experimental 

control of a flat spectrum will result in stronger conclusions 

about the overall absorption properties.  By removing the 

frequency-dependent component of the analysis for this study, 

the frequency effects on ASR can easily be compared in future 

studies.  Data for clarity, definition, and speech transmission 

index are also listed. 

 

 

Table 1: Absorption Coefficients and Room 

Acoustic Parameters 

5. Results 

Below are the results using the Matlab platform to 

investigate the overall speech recognition accuracy in 

reverberation.  The dotted line at 17% accuracy reflects the 

performance of random guessing. The average accuracy 

percentage for each absorption and corresponding 

reverberation time is graphed here, with the error bars 

representing a standard deviation measure above and below.  

Also shown in this figure are the results of the comparison of 

impulse response components: early reflections and 

reverberant tail. 

 

Figure 1: Impulse Response Components 

The shape of the response from the full room effect is 

similar to the response from both reverberant tail and 

reverberant tail with direct sound.  These curves all show a 

steep drop off past 1s reverberation time, which is similar to 

the effective drop off point for human speech intelligibility.  

The response from the strength of early reflections is different 

from the other curves.  While the original early reflections 

vector shows an increased performance at 2 second 

reverberation, when normalized to have equal strength as the 

reverberant tail it shows a dramatically decreased 

performance. 

Figure 2 shows an example of the 4 impulse responses 

compared to the full room impulse response, for an absorption 

of 20%. The reverberant tail is tested by itself, and normalized 

to the -1 to 1 range for wave file format. Originally, the 

reverberant tail did not include the direct sound, since the 

direct sound is part of the head-related impulse response 

(HRIR) calculation of the early reflections. A truncation 

method based on the 0.1 dB point of the Schroeder curve was 

used to remove just the direct sound portion of the HRIR and 

add it to the reverberant tail in a separate impulse response. 

Next just the early reflections were tested. Finally, the early 

reflections were tested with the spectral power in the early 

reflections being equal to that in the reverberant tail. A string 

of zeros was appended to the early reflections to equal the 

length of the reverberant tail. The root mean square (rms) 

power of the reverberant tail was divided by the rms power of 

the early reflections (excluding the direct sound) and that 

proportion was multiplied by the early reflections. In this case 

it slightly increased the power of the early reflections relative 

to the direct sound. 

 

Figure 2: Impulse Response Comparison 

Absorption 20% 

Plotted impulse response components: (a) reverberant 

tail, (b) direct and reverberant tail, (c) early 

reflections, (d) early reflections with energy equal to 

reverberant tail, and (e) full room effect. 

The overall results of the study were compared with five 

other ASR studies which reported reverberation properties or 

reverberation times in their results.  Figure 3 shows the Matlab 

platform and Dragon NaturallySpeaking results, compared 

with each of the Palomäki, Hatziantoniou, Park, Gillespie, and 

Gelbart data. 

 

 

Figure 3: Comparison of Reverberant ASR 

Studies 

This comparison suggests that most of the data found 

from the platforms in this study are on the extremes of the 

overall ASR performance in the field. The Matlab recognizer 

is more robust to reverberation than most data gathered from 

other studies, while the Dragon recognizer is less robust. The 



overall slope of the decline in accuracy with increasing 

reverberation time is comparable, though the shapes have 

some differences. The Matlab recognizer appears to have a 

more negative second derivative than the Palomäki et al. data, 

for instance, with a general curve down with increasing RT. 

The Palomäki et al. data is fairly linear with RT at about 35% 

accuracy drop per additional second of RT, until the last data 

point at 2.5 s RT, which does not follow this trend. The 

Dragon data appears to have a more positive second derivative 

than the Palomäki et al. data, with a generally curving upward 

shape (though not with a positive slope). The Dragon data is 

bounded by a zero recognition asymptote, so this shape could 

be affected by that as well. The Hatziantoniou data points 

show a similar linear trend to the Palomäki et al. and Matlab 

curves, with about 45% accuracy depreciation per second of 

RT though they are in a region where each of the other data 

sets has few data points. The Park data shows a sharper 

depreciation between its two data points, about 70% accuracy 

depreciation per second of RT, though its data points are very 

close together in a low RT range, so any extrapolation outside 

of this range is tenuous. Its slope and accuracy position is 

more similar to the Dragon data than any other data points. 

Overall, there is a large observed variability between the 

accuracy degradation with respect to RT, as there are many 

test methodologies, experimental setups, and algorithms 

available for ASR evaluation. 

 

6. Conclusions 

Two specific speech recognizers were chosen and tested. 

The Matlab recognizer was chosen largely for ease of use and 

its flexibility to be reprogrammed for the purposes of specific 

investigations, while the Dragon analyzer was a commonly 

used product for typical practical applications. The parameters 

analyzed were fairly basic: average room absorption across all 

frequencies, and early or late energy balances in various 

configurations. The test samples were acquired with a simple 

anechoic recording process and convolved with a series of 

impulse responses; the methodology could easily (and should) 

be repeated with a new system or analyzing new room-

acoustics configurations. The results point to some interesting 

conclusions for the ASR community. The degradation seems 

to be dominated by the reverberant tail (i.e. the late, diffuse-

field energy). Although early reflections have an additional 

effect, the general properties of the room reverberation 

degradation mirror that of the reverberant tail. When the early 

reflections are equalized to be as strong as the reverberant 

energy they sometimes show a substantial accuracy decrease. 

This does not necessarily correlate with human intelligibility, 

since early reflections usually strengthen the direct sound and 

increase intelligibility, and yet they can dramatically decrease 

ASR accuracy. 

The two recognition results were compared to other 

results in the field to begin to arrive at a consensus on the 

nature of the depreciation of ASR in reverberation. The results 

showed a wide variability resulting from testing procedure and 

algorithm chosen. Nevertheless, they showed some similarities 

in the slope of the depreciation between systems. 

7. Future Research 

Further standardization of testing and reporting 

procedures with regards the room acoustics experimental 

setups will help to the ASR field to have a more nuanced and 

cohesive discussion of reverberant ASR in the future. 

Additionally, it should be noted that as one of the first acoustic 

analyses of automatic speech recognition, the raw data, 

reported averages, and shape of each accuracy curve represent 

important findings of the study. They will help inform the 

recognition com-munity on the nature of the reverberant ASR 

problem. It is the hope of the researcher that these findings can 

be a benchmark for further investigation and point to new 

alternatives and approaches to the problem. 
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